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During the Notre Dame workshop on Vaught’s Conjecture, Hjorth and
Kechris asked which Borel equivalence relations can arise as the isomorphism
relation for models of a first order theory. In particular, they asked if the
isomorphism relation can be essentially countable but not tame. We show
this is not possible if the theory has uncountably many types.

I am grateful to the logic group at Notre Dame for organizing this stim-
ulating workhop.

1 Preliminaries

We begin by recalling the basic defintions and background material.
Suppose Ei is an equivalence relation on a standard Borel space Xi for

i = 1, 2.
We say that E1 is Borel reducible to E2 if there is a Borel measurable

f : X1 → X2 such that xE1y if and only if f(x)E2f(y) for all x, y ∈ X1.
An equivalence relation is countable if every equivalence class is countable

and essentially countable if it is Borel reducible to a countable equivalence re-
lation. If E1 ≤B E2 and E2 ≤B E1, we write E1 ≈B E2. A Borel equivalence
relation E on X is tame if there is a Polish space Y and a Borel measurable
f : X → Y such that xEy if and only if f(x) = f(y).

If L is a countable first order language we let XL be the Polish space of
L-structures with universe N. For σ ∈ Lω1,ω let Mod(σ) be the Borel set of
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M∈ XL with M |= σ and let ∼=σ be the equivalence relation of isomorphism
on Mod(σ). In general, ∼=σ is Σ1

1, but need not be Borel.

Theorem 1.1 For each countable Borel equivalence relation E, there is σ ∈
Lω1,ω such that E ≈B

∼=σ.

We give a quick sketch of the proof.1 Since E is a countable Borel equiva-
lence relation, by the Feldman-Moore Theorem [2], E is the orbit equivalence
relation of a Borel action of a countable discrete group G on a Polish space
X. Let E(G, 2ω) be the natural shift action of G on (2ω)G. There is a Borel
reduction of E to E(G, 2ω), see [1] 1.2.

Let L = {ĝ : g ∈ G} ∪ {Un : n ∈ ω} where each ĝ is a unary function
and Un is a unary predicate. Let σ be an L-sentence such that M |= σ is
a principle homogeneous space for the action α(g, x) = ĝ(x) of G on M.
For M |= σ, we associate fM ∈ (2ω)G where fM(g)(n) = 1 if and only if
M |= Un(ĝ(0)). This is a Borel isomorphism between Mod(σ) and (2ω)G and
M∼= N if and only if fME(G, 2ω)fN . It follows that ∼=σ is a countable Borel
equivalence relation and there is f : X → Mod(σ) a Borel reduction of E to
∼=σ.

Since E has countable classes the map f is countable-to-one. Thus f(X)
is Borel and there is a Borel measurable g : f(X) → X such that f(g(x)) = x.

Let C = {M |= σ : ∃N ∈ f(X)N ∼= M}. Since f(X) is Borel and ∼=σ is
a countable equivalence relation, C is Borel. Clearly C is ∼=-invariant. But
every ∼=-invariant Borel set is Mod(τ) for some Lω1,ω-sentence τ . Clearly f
is a reduction of E to ∼=τ . There is a Borel h : Mod(τ) → f(X) such that
M∼= h(M). Then g ◦ h is a reduction of ∼=τ to E. Thus E ≈B

∼=τ .

Hjorth and Kechris asked if the same result was true for first order theo-
ries. It is easy to give example of theories T with continuum many countable
models where ∼=T is tame. For example, let T be the theory of an equiva-
lence relation with infinitely many classes where each class contains an alge-
braically closed field. Then models are determined up to isomorphism by the
set of transcendence degrees of the equivalence classes. Are there any first
order theories T with ∼=T essentially countable but not tame? We show that
any such theory must have few types.

Let C be the Cantor space 2ω. Fix 〈 , 〉 : ω2 → ω a pairing function. For
x ∈ C, let Ax ⊆ C be the set {x1, x2, . . .} where xi(j) = x(〈i, j〉). We say
xEcnt y if and only if Ax = Ay.

1I am grateful to Kechris for showing me this argument.
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The equivalence relation Ecnt is not essentially countable. See [3] Exercise
2.64.

Theorem 1.2 Let T be a first order theory in a countable language where
the type space S(T ) is uncountable. Then Ecnt ≤B

∼=T . Thus ∼=T is not
essentially countable.

This result is not surprising as the set of realized types is a natural in-
variant of a model.

2 Theories with Many Models

Suppose T is a first order theory in a countable language with S(T ) uncount-
able.

We can find T a perfect tree of types in S(T ). Choose rT ∈ C such that
L, T, T ≤T rT . Using T we can code elements of the Cantor space as types.

Lemma 2.1 There is continuous one-to-one map τ : C → S(T ) such that
τ(x) ≤T x⊕ rT and x ≤T τ(x)⊕ rT , where x⊕ y is the join of x and y.

Scott Sets

Definition 2.2 We say that S ⊆ C is a Scott Set if
i) if x ∈ S and y ≤T x, then x ∈ S;
ii) if x, y ∈ S, then x⊕ y ∈ S;
iii) if x ∈ S codes an infinite subtree t of 2<ω, then there is y ∈ S an

infinite path through t.

We need a refinement of recursively saturated models.

Definition 2.3 Let T be a complete first order theory in a countable lan-
guage and let S be a Scott set with T ∈ S. We say thatM |= T is S-saturated
if:

i) for all x ∈ S if a1, . . . , an ∈ M and p(v, a1, . . . , an) is a partial type
recursive in some x ∈ S, then p is realized in M;

ii) tp(a1, . . . , an) ∈ S for all a1, . . . , an ∈ M .

S-saturated models were studied in papers of Knight and Nadel ([4],[5])
and Wilmers [7]. The next result summarizes the facts that we will need.
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Proposition 2.4 Let T be a first order theory in a countable language. Let
S be a countable Scott set with T ∈ S.

i) There is a countable S-saturated model of T .
ii) S-saturated models of T are ω-homogeneous.
iii) Any two countable S-saturated models of T are isomorphic.

The proof of i) is a Henkin arguement where one alternates trying to
realize types in S, witnessing existential sentences and making sure that for
all Henkin constants c1, . . . , cn, tp(c1, . . . , cn) ∈ S. The uniformity of this
construction (and the uniqueness of S-saturated models) allows us to prove
the following.

Lemma 2.5 Let S = {x ∈ C : Ax is a Scott set}. Then S is Borel and there
is a Borel µ : S → Mod(T ) such that µ(x) is the Ax-saturated model of T .

In fact, by the main result of [6], if T ∈ Ax, then an Ax-saturated model
can be constructed recursively in x.

Borel Closure Systems

Let F = {f1, f2, . . .} be a countable set of Borel functions fi : Cmi → C. For
A ⊆ C, let clF(A) be the closure of A under the functions in F .

Definition 2.6 We say that I ⊆ C is F-independent if

clF(A) ∩ I = A

for all A ⊆ I.

Lemma 2.7 For any countable set of Borel functions F , there is a perfect
F-independent set.

Proof If P is a perfect set of suitably generic Cohen reals, then P is F -
independent.

Let F be the following collection of functions:
i) j(x, y) = x⊕ y;
ii)

fe(x) =
{

φx
e if φx

e is a total function in C
x otherwise

for e = 0, 1, . . . .
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iii) t(x) = leftmost path in the tree coded by x if x codes a tree on 2<ω

and t(x) = x otherwise.
iv) the constant function x 7→ rT .

If A ⊆ C, then clF(A) is a Scott set containing A∪{rT}. The construction
of closures is uniform.

Lemma 2.8 There is a Borel ν : C → C such that Aν(x) is the F-closure of
Ax for all x ∈ C. In particular, Aν(x) is a Scott set containing Ax ∪ {rT}.

Proof of Theorem 1.2

Let P be a perfect F -independent set with ρ : C → P a homeomorphism.
There is a Borel ρ∗ : C → C such that Aρ∗(x) = ρ(Ax).

For A ⊆ C countable, let SA = clF(ρ(A)) and let MA be the unique
countable SA-saturated model of T .

Lemma 2.9 If A 6= B, then MA 6∼= MB.

Proof Suppose x ∈ A \B. Then ρ(x) ∈ SA, but, since P is F -independent,
ρ(x) 6∈ SB. Since rT ∈ SA ∩ SB, it follows from Lemma 2.1, that τ(ρ(x)) ∈
S(T )∩SA and τ(ρ(x)) 6∈ S(T )∩SB. The type τ(ρ(x)) is realized in MA but
not MB. Thus MA 6∼= MB.

We now build our reduction of Ecnt to ∼=T . For x ∈ C, let g(x) =
µ(ν(ρ∗(x)). Unravelling the definiton:

i) Aρ∗(x) = ρ(Ax);
ii) Aν(ρ∗(x)) = clF(ρ(Ax));
iii) g(x) is a code for a clF(ρ(Ax))-saturated model of T .

Since S-saturated models are unique, if xEcnt y, then g(x) ∼= g(y). By
Lemma 2.9, if x 6Ecnt y, then g(x) 6∼= g(y). Thus Ecnt ≤B

∼=T .

Remarks

Let hMod(T ) ⊆ Mod(T ) be the codes for homogeneous models of T . Count-
able homogeneous models are determined by the pure types they realize.

Corollary 2.10 Suppose S(T ) is uncountable, then Ecnt ≈B
∼=T | hMod(T ).

Problem Find a first order theory T where ∼=T is not tame and Ecnt 6≤B
∼=T .

Note that counterexamples to Vaught’s conjecture have this property.
Is there a ω-stable theory with this property?
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