Math 215: Introduction to Advanced Mathematics

Problem Set 11

Due: Friday November 30

- 1) a) Prove that the interval (0,1) is equipotnet with the interval (a,b). [Note: the interval $(c,d) = \{x \in \mathbb{R} : c < x < d\}$.]
 - b) Prove that the interval (0,1) is equipotent with the interval $(0,+\infty)$.
- c) Prove that the interval $(0, +\infty)$ is equipotent with \mathbb{R} . Conclude that (0, 1) is equipotent with \mathbb{R} .

[HINT: For this problem you can use familiar functions from algebra and calculus.]

2) If A is any set we define $A^2 = A \times A$ and

$$A^n = \underbrace{A \times \ldots \times A}_{n-\text{times}}.$$

We also think of $A^n = \{(a_1, \dots, a_n) : n \in A\}$. Let $Seq(A) = \bigcup_{n \in \mathbb{N}} A^n$. Then

Seq(A) is the set of all finite sequences from A.

- a) Prove that if A is countable, then A^n is countable for all n. [Hint: This should be an easy induction.]
 - b) Prove that if A is countable, then Seq(A) is countable.
- 3) Suppose A and B are nonempty.
- a) Prove that if there is a surjection $f: A \to B$, then there is an injection $g: B \to A$. [Hint: In an earlier homework we showed that there is $g: B \to A$ such that $f \circ g = Id_B$.]
- b) Prove that if there is an injection $f: B \to A$, there is a surjection $g: A \to B$.

Taken together these show that we could equivalently define $|A| \leq |B|$ by there is a injection from $A \to B$ or there is an surjection from $B \to A$.

(5pt bonus) If $f: A \times B \to C$. For each $a \in A$, we get a function $f_a \in \mathcal{F}(B,C)$, where $f_a: B \to C$ is given by $f_a(b) = f(a,b)$.

Let $\Phi : \mathcal{F}(A \times B, C) \to \mathcal{F}(A, \mathcal{F}(\mathcal{B}, \mathcal{C}))$ be defined so that for $f : A \times B \to C$, $\Phi(f) : A \to \mathcal{F}(B, C)$ is the function such that $\Phi(f)(a) = f_a$.

Prove that Φ is a bijection. This gives an argument that even for infinite sets

$$(|C|^{|A|})^{|B|} = |C|^{|A||B|}.$$