Math 215: Introduction to Advanced Mathematics Midterm I–Study Guide

• The midterm exam will be on Friday October 12. The exam will cover chapters 1–7.

• The course web page contains a week-by-week syllabus

http://www.math.uic.edu/~marker/math215-F12/wtow.html and a list of key concpets

http://www.math.uic.edu/~marker/math215-F12/concepts.html
that gives a more detailed description of the material you are responsible for.
One good way to study is to work on the sample problems suggested on the course web page.

• If I ask you to prove something from the axioms for ordered fields, I will provid you with a copy of the axioms.

Sample Exam

- 1) Consider the statement: if a > b, then f(a) > f(b).
 - a) What is the contrapositive of this statement?
 - b) What is the converse of this statement?
 - c) What is the negation of this statement.
- 2) a) Determine the truth table for

$$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$$

b) Find a simpler statement equivalent to $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$.

3) a) Decide if the following statements are true in the nonnegative integers $\mathbb{N} = \{0, 1, 2, \ldots\}$. Justify your answers.

i) $\forall x \exists y \ x < y;$ ii) $\exists x \forall y \ x < y;$

- iii) $\forall x \exists y \ x + x = y;$
- iv) $\forall x \exists y \ y + y = x;$

v) $\forall x \exists y \forall z \ y$ is a power of 2 and if z is a power of 2 dividing x, then z divides y.

b) Write down the negations of statements i) and ii) and v).

- 4) Prove from the axioms for ordered fields that if 0 < x < y, then $x^3 < y^3$.
- 5) Prove that if $a^2 \ge 7a$, then $a \le 0$ or $a \ge 7$.

6) Prove that

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}$$

for all $n \geq 2$.

7) Prove that $A \subseteq B$ if and only if $A \cup B \subseteq B$.