Math 215: Introduction to Advanced Mathematics Midterm I–Study Guide

• The midterm exam will be on Friday October 4. The exam will cover chapters 1–6.

• The course web page contains a week-by-week syllabus

http://www.math.uic.edu/~marker/math215-F13/wtow.html
This is a good way of seeing which material you are responsible for.
One good way to study is to work on the sample problems suggested on the course web page.

Key Concepts Chapters 1–6

- Chapter 1–The Language of Mathematics
 - mathematical statements, propositions, predicates
 - building compound statements using AND, OR, and NOT.
 - truth tables—using truth tables to prove that statements are equivalent
 - negating statements: not (P and Q) is equivalent to (not P or not Q);jbr; not(P or Q) is equivalent to (not Q or not P)
- Chapter 2–Impication
 - implications, universal implications
 - negating an implication: not (P=iQ) is equivalent to (P and not Q)
 - reading phrases like "P is necessary for Q", "P whenever Q"... as implications
 - converses
 - contrapositives
 - if and only if statements
- Chapter 3–Proofs
 - direct proofs
 - proof by cases
 - proof by proving contrapositive

- Chapter 4–Proof by Contradiction
 - contradictions
 - proof by contradiction
 - proving $P \Rightarrow Q$ by contradiction
 - proving $P \Rightarrow (QorR)$ by contradiction
 - the square root of 2 is irrational
 - there are infinitely many prime numbers
- Chapter 5–The Induction Principle
 - proof by induction
 - changing the base case
 - definition by induction
 - strong induction
- Chapter 6–The Language of Set Theory
 - sets
 - equality of sets: proving two sets are equal
 - subsets: proving one set is a subset of another
 - the empty set
 - union, intersection and difference of sets
 - Venn diagrams
 - power sets
 - complements

Sample Exam

- 1) Consider the statement: if a > b, then f(a) > f(b).
 - a) What is the contrapositive of this statement?
 - b) What is the converse of this statement?
 - c) What is the negation of this statement?
- 2) a) Determine the truth table for

$$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$$

- b) Find a simpler statement equivalent to $(P\Rightarrow Q)\Rightarrow (Q\Rightarrow P).$
- 3) Sketch the proof the $\sqrt{2}$ is irrational.

4) Prove that an integer n is divisible by 10 if and only if n is divisible by 2 and n is divisible by 5.

5) Prove that

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}$$

for all $n \geq 2$.

6) Prove that $A \subseteq B$ if and only if $A \cup B \subseteq B$.