Math 215: Introduction to Advanced Mathematics

Midterm II-Study Guide

- The second midterm exam will be on Friday November 15. The exam will cover chapters 7–11 + chapter 12.1 + chapter 22.
- The course web page contains a week-by-week syllabus http://www.math.uic.edu/~marker/math215-F13/wtow.html
- One good way to study is to work on the sample problems suggested on the course web page.

Key Concepts Chapters 7–12.1 + chapter 12

- Chapter 7–Quantifiers
 - 1. \exists and \forall
 - 2. finding negations of statements with quantifiers
 - 3. proving universal and existential statements
 - 4. Cartesian products
 - 5. convergence of sequences
- Chapter 8–Functions
 - 1. functions, domains, codomains and images
 - 2. composition
 - 3. graphs of functions and the formal definition of functions
- Chapter 9–Injections, surjections, bijections
 - 1. injection, surjections and bijections
 - 2. behavior under composition
 - 3. inverse functions, f has an inverse if and only if f is a bijection
 - 4. the image and preimage functions
- Chapter 10–Counting
 - 1. cardinalities of finite sets

- 2. the addition, multiplication and inclusion-exclusion principles
- Chapter 11–Finite Sets
 - 1. $|X| \leq |Y|$ if and only if there is an injection $f: X \to Y$
 - 2. the Pigeonhole Principle
 - 3. Dirichlet's Theorem
 - 4. If Y is finite and $f: X \to Y$ is an injection, then X is finite
 - 5. if X is finite and $f: X \to Y$ is a surjection, then Y is finite,
- Chapter 12–Counting Functions and Sets–12.1 only
 - 1. counting the number of functions $f:X\to Y$ when X and Y are finite
 - 2. count in the number of injections $f:X\to Y$ when X and Y are finite
- Chapter 22–Partitions and Equivalence Relations
 - 1. equivalence relations
 - 2. partitions

Sample Questions¹

- 1) Define the following concepts:
 - a) The sequence $(a_n)_{n=1}^{\infty}$ converges to a.
 - b) $f: X \to Y$ is injective.
 - c) \sim is an equivalence relation on X.
 - d) Π is a partition of X.
- 2) a) Decide if the following statements are true in the nonnegative integers $\mathbb{N} = \{0, 1, 2, \ldots\}$. Justify your answers.
 - i) $\forall x \exists y \ x < y$;
 - ii) $\exists x \forall y \ x < y$;
 - iii) $\forall x \exists y \ x + x = y;$
 - iv) $\forall x \exists y \ y + y = x;$
- v) $\forall x \exists y \forall z$ (y is a power of 2 and if z is a power of 2 dividing x, then z divides y).
 - b) Write down the negations of statements i) and ii) and v).
- 3) Let $A = \{1, 2, 3, 4\}$, let $B = \{1, 2, 3, 4, 5\}$ and define $f: A \to B$ by

$$\begin{array}{c|cc} x & f(x) \\ \hline 1 & 2 \\ 2 & 2 \\ 3 & 3 \\ 4 & 5 \\ \end{array}$$

- a) What is $\overrightarrow{f}(\{1,2\})$? b) What is $\overleftarrow{f}(\{2,4,5\})$?
- 4) Decide if each of the following statement is TRUE or FALSE. If FALSE, give an example showing it is FALSE.
- a) Suppose $f: X \to Y$ and $g: Y \to X$ such that $g \circ f = I_X$. Then g is the inverse of f.
 - b) For all sets A and B, if $A \subseteq B$, then $B^{c} \subseteq A^{c}$.
 - c) For all sets A and B, $|A \cup B| = |A| + |B|$
 - d) $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} \ y < x$.

¹This sample is consdierably longer than the midterm will be.

- e) If $f: X \to Y$ and $A, B \subseteq X$ and $A \subseteq B$, then $\overrightarrow{f}(A) \subseteq \overrightarrow{f}(B)$.
- f) Suppose \sim_1 is an equivalence relation on X and \sim_2 is an equivalence relation on X. Let $x \sim y$ if and only if $(x \sim_1 y \text{ or } x \sim_2 y)$. Then \sim is an equivalence relation.
- 5) Suppose $f:X\to Y$ is a bijection. Prove that $\overrightarrow{f}:\mathcal{P}(X)\to\mathcal{P}(Y)$ is a bijection.
- 6) Suppose m, n > 0. Let $F = \{f : \mathbb{N}_m \to \mathbb{N}_n \text{ such that } f(1) = 1\}$.
 - a) Prove there is a bijection between F and $\mathcal{F}(\mathbb{N}_{m-1}, \mathbb{N}_n)$.
 - b) What is |F|?
- 7) Using the definition of convergence, prove that the sequence $(\frac{1}{\ln(n+1)})_{n=1}^{\infty}$ converges to 0.