Math 215: Introduction to Advanced Mathematics
Problem Set 10

Due Wednesday November 22

1) A standard deck of cards has 4 suits and each suit has 13 cards 2, 3, \ldots, 10, J, Q, K, A. In draw poker your are dealt 5 cards.
 a) How many 5 card poker hands are there? [Note: The order you are dealt
 the cards doesn’t matter. If you are dealt the A♥, 5♦, A♠, K♠, and then
 the 3♣, you have the same hand as if you were dealt 5♦, K♠, 3♣, A♥, and
 then the A♠.]
 b) A flush is when all 5 cards are from the same suit. How many ways are
 there to be dealt a flush.
 To calculate the probability of being dealt a flush, divide your answer to b)
 by your answer to a).

2) Let \(X \) be a finite set with \(|X| = n \) and let \(0 \leq r \leq n \).
 Let \(F : \mathcal{P}_r(X) \to \mathcal{P}_{n-r}(X) \) be the function
 \(F(A) = X - A \). Prove that \(X \) is a bijection and conclude that
 \[
 \binom{n}{r} = \binom{n}{n-r}
 \]

3) a) Suppose \(X \) and \(Y \) are disjoint sets. Let
 \[
 A = \bigcup_{i=0}^{k} \mathcal{P}_i(x) \times \mathcal{P}_{k-i}(Y) = (\mathcal{P}_0(X) \times \mathcal{P}_k(Y)) \cup (\mathcal{P}_1(X) \times \mathcal{P}_{k-1}(Y)) \cup \ldots \cup (\mathcal{P}_k(X) \times \mathcal{P}_0(Y)).
 \]
 Let \(F : A \to \mathcal{P}_k(X \cup Y) \) be the function
 \[
 F(A \times B) = A \cup B.
 \]
 Prove that \(F \) is a bijection.
 b) Use a) to conclude that
 \[
 \binom{m+n}{k} = \sum_{i=0}^{r} \binom{m}{i} \binom{n}{r-i}.
 \]

4) (5pt Bonus) Let \(X, Y, Z \) be nonempty sets. Suppose \(f : X \times Y \to Z \) and
 \(y \in Y \), let \(f_y : X \to Z \) be the function
 \[
 f_y(x) = f(x, y).
 \]
 Define \(\Phi : \mathcal{F}(X \times Y, Z) \to \mathcal{F}(Y, \mathcal{F}(X, Z)) \) as follows: For \(f : X \times Y \to Z \), let
 \(\Phi(f) : Y \to \mathcal{F}(X, Z) \) be the function \(y \mapsto f_y \). Prove that \(\Phi \) is a bijection.
 For finite sets \(X, Y, Z \), this shows
 \[
 |Z|^{\ |X| \cdot |Y|} = \left(|Z|^{|X|} \right)^{|Y|}.
 \]