
Math 413–Analysis I

Final Exam–Solutions

1)(15pt) Define the following concepts:
a) (xn)

∞
n=1

converges to L;
For all ε > 0 there is an N ∈ N such that |xn − L| < ε for all n ≥ N .

b) A ⊆ R is compact;
If (xn)

∞
n=1

is a sequence of elements of A, there is a subsequence converging
to an element of A.

c) f : R → R is differentiable at c.

lim
x→a

f(x)− f(a)

x− a
= L for some L ∈ R.

2) (10pt) State the following Theorems:
a) Intermediate Value Theorem;

Suppose f : [a, b] → R is continuous and f(a) < c < f(b). Then there is
a < x < b with f(x) = c.

b) Nested Interval Property;
If I1 ⊇ I2 ⊇ I3 ⊇ . . . where each Ii is a closed interval [ai, bi], then there

is x ∈
⋂∞

n=1
In.

3) (15pt) State and prove the Monontone Convergence Theorem.
If (xn)

∞
n=1

is a bounded sequence and x1 ≤ x2 ≤ . . ., then (xn) converges.
Let L be the least upper bound of {xn : n = 1, 2, . . .}. Let ε > 0. Since

L− ε is not an upperbound, there is N ∈ N such that L− ε < xn ≤ L for all
n ≥ N .

4)(30pt) Decide if the following statements are TRUE or FALSE. If FALSE,
give an example showing the statement is FALSE.

a) Suppose f : R → R is continuous and A ⊆ R is bounded, then f(A) is
bounded.

TRUE. Find an M such that A ⊆ [−M,M ]. Then f(A) ⊆ f([−M,M ])
and the later set is compact and hence bounded.

b) Suppose f : A→ R is continuous and (an)
∞
n=1

is a convergent sequence in
A with lim an ∈ A, then (f(an))

∞
n=1

converges.
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TRUE. (On the other hand, if we don’t know that the limit is in A, then
we can not conclude that the sequence of images is convergent.)

c) If (xnyn)
∞
n=1

, (xn)
∞
n=1

are convergent where xn > 0 for all n, then (yn)
∞
n=1

is convergent.
FALSE. Consider (yn) = (1, 2, 3, 4, . . .) and (xn) = (1, 1/4, . . . , 1/n2, . . .),

then (xnyn) = (1, 1/2, 1/3, . . .) converges even though (yn) does not.

d) If f : R → R is differentiable at a, then f is continuous at a.
TRUE.

e) If A is bounded and f : A→ R is continuous, then f is uniformly contin-
uous.

FALSE. Let f : (0, 1)→ R be f(x) = 1

x
.

f) If f : R → R and g : R → R are differentiable at a, then g ◦ f is
differentiable at a.

FALSE. Let f(x) = x − 1 and g(x) = |x|. Then f and g are both
differentiable at 1. But g ◦ f(x) = |x− 1! is not differentiable at 1.

5)(10pt) Suppose g : R → R is continuous at c and g(c) 6= 0. Prove that
there is an open interval (a, b) such that a < c < b and g(x) 6= 0 for all
x ∈ (a, b).

We have |g(c)| > 0. Let ε = |g(c)|/2. Since g is continuous at c there is
δ > 0 such that |g(x) − g(c)| < ε if |x − c| < δ. Thus if |x − c| < δ, then
|g(x)− g(c)| < |g(c)|/2. But

|g(c)| ≤ |g(x)|+ |g(x)− g(c)| < |g(x)|+ |g(c)|/2.

Thus
0 < |g(c)|/2 < |g(x)|

for x ∈ (c− δ, c+ δ).

6) (10pt) Suppose f : R → R is differentiable. Suppose there are four distinct
points w, x, y, z such that f(w) = f(x), f(y) = y and f(z) = z. Prove that
there is a point u where f ′(u) = 1

2
.

Since f(w) = f(x), by Rolle’s Theorem, there is c between w and x with
f ′(c) = 0. By the Mean Value Theorem, there is d betwee y and z with

f ′(d) =
f(y)− f(z)

y − z
=

y − z

y − z
= 1.
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By Darboux’s Theorem, there is u between c and d with f ′(u) = 1

2
.

7) (10pt) Suppose f : R → R. Suppose lim
x→c

f(x) 6= L. Prove that there is a

sequence (xn)
∞
n=1 converging to c such that (f(xn))

∞
n=1 does not converge to

L.
Since lim

x→c
f(x) 6= L, there is ε > 0 such that for all δ > 0 there is x such

that 0 < |x− c| < δ and |f(x)− L| > ε.
For each n ∈ N choose xn such that |xn − c| < 1

n
and |f(xn)− f(c)| > ε.

Then (xn)→ c, but (f(xn)) 6→ L.
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