Math 413 Analysis I

Midterm 2 November 26, 2003

1)(15pt) Give complete definitions of the following concepts:

a) $f: A \to \mathbb{R}$ is continuous;

For all $a \in A$ and for all $\epsilon > 0$ there is $\delta > 0$ such that if $x \in A$ and $|x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

b) $f: A \to \mathbb{R}$ is uniformly continuous;

For all $\epsilon > 0$ there is $\delta > 0$ such that if $x, a \in A$ and $|x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

- 2) (15pt) Give complete statements of the following results:
- a) Extreme Value Theorem

If K is compact and $f: K \to \mathbb{R}$ is continuous, then f attains a maximum and minimum value.

b) Mean Value Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous and f is differentiable on (a,b), then there is $a<\xi< b$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

- 3)(30pt) Decide if the following statements are TRUE or FALSE. If FALSE, give an example showing it is FALSE.
- a) If $f : \mathbb{R} \to \mathbb{R}$ is continuous at every rational number, then f is continuous. FALSE. For example

$$f(x) = \begin{cases} 0 & \text{if } x < \pi \\ 1 & \text{if } x \ge \pi \end{cases}$$

is continuous at all rationals but discontinuous at π .

- b) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subseteq \mathbb{R}$ is open, then $f^{-1}(A)$ is open. TRUE.
- c) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and A is compact, then $f^{-1}(A)$ is compact. FALSE. For example, let $f(x) = \sin x$. Then $f^{-1}([-1,1]) = \mathbb{R}$.

1

d) There is a real number $x \in [0, 1]$ such $3 - x^2 = e^x$.

TRUE. (Let $f(x) = 3 - x^2 - e^x$. Then f(0) = 2 while f(1) = 3 - 1 - e < 0. By the Intermediate Value Theorem there is $x \in [0, 1]$ with f(x) = 0, e) If f is differentiable at a and g is differentiable at f(a) then $g \circ f$ is continuous at a.

TRUE.

4)(15pt) Let $f(x) = x^2 - 4x$. Using the definition of the derivative find f'(3).

$$f'(3) = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$$

$$= \lim_{x \to 3} \frac{x^2 - 4x + 3}{x - 3}$$

$$= \lim_{x \to 3} \frac{(x - 1)(x - 3)}{x - 3}$$

$$= \lim_{x \to 3} x - 1$$

$$= 2.$$

5)(15pt) Suppose $f:[a,b]\to\mathbb{R}$ is differentiable and $f'(x)\geq M$ for all $x\in[a,b]$. Prove that $f(b)\geq f(a)+M(b-a)$.

By the Mean Value Theorem, there is $a < \xi < b$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Since $f'(\xi) \geq M$,

$$\frac{f(b) - f(a)}{b - a} \ge M$$

and $f(b) \ge f(a) + M(b-a)$.

6) (10pt) Suppose $f: A \to \mathbb{R}$ is uniformly continuous and $(a_n)_{n=1}^{\infty}$ is Cauchy where $a_n \in A$ for all $n \in \mathbb{N}$. Prove that the sequence $(f(a_n))_{n=1}^{\infty}$ is Cauchy.

Let $\epsilon > 0$. There is $\delta > 0$ such that if $x, y \in A$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Since (a_n) is Cauchy, there is $N \in \mathbb{N}$ such that $|a_n - a_m| < \delta$ for all $n, m \geq N$. But then $|f(a_n) - f(a_m)| < \epsilon$ for all $n, m \geq N$ and $(f(a_n))_{n=1}^{\infty}$ is Cauchy.