Math 413 Analysis I Problem Set 12

Due Friday November 21

1) Let $\epsilon > 0$. We say that $f : \mathbb{R} \to \mathbb{R}$ is ϵ -continuous at a if there is $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ for all $x, y \in V_{\delta}(a)$

a) Prove that f is continuous at a if and only if f is ϵ -continuous at a for all $\epsilon > 0$.

b) Let $D = \{a : f \text{ is not continuous at } a\}$. Let $D_{\epsilon} = \{a : f \text{ is not } \epsilon\text{-continuous at } a\}$. Prove that

$$D = \bigcup_{\epsilon > 0} D_{\epsilon} = \bigcup_{n=1}^{\infty} D_{\frac{1}{n}}.$$

2) Let $f : [0, +\infty)$ be the function $f(x) = \sqrt{x}$. Use the definition of the derivative to show that if a > 0, then f is differentiable at a and $f'(a) = \frac{1}{2\sqrt{a}}$.

3) Suppose $f, g, h : \mathbb{R} \to \mathbb{R}$ and $f(x) \leq g(x) \leq h(x)$ for all x, and f'(a) = h'(a).

a) Suppose f(a) = g(a) = h(a). Prove that g is differentiable at a and g'(a) = f'(a) = h'(a).

b) Give an example showing this fails if we do not assume that f(a) = g(a) = h(a).

4) Prove the following statement or give a counterexample. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f' is nonconstant, there is an $x \in \mathbb{R}$ such that f'(x) is irrational.

5) a) Suppose $g : \mathbb{R} \to \mathbb{R}$ is continuous at 0. Let f(x) = xg(x). Prove that f is differentiable at 0. What is f'(0)?

b) Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable at 0 and f(0) = 0. Prove that there is function g(x) continuous at 0 such that f(x) = xg(x) for all $x \in \mathbb{R}$. What is g(0)?