Math 413 Analysis I

Problem Set 3

Due Friday September 12

Do the following problems from Abbott's *Understanding Analysis* and problems 1) and 2) below.

Exercise 2.2.1

Exercise 2.2.8

- 1) Prove that the sequence $(a_n)_{n=1}^{\infty}$ converges to a if and only if the sequence $(a_{2n-1})_{n=1}^{\infty}$ converges to a and the sequence $(a_{2n})_{n=1}^{\infty}$ converges to a. [Note: the first sequence is (a_1, a_3, a_5, \ldots) and the second is (a_2, a_4, a_6, \ldots) .]
- 2) Recall that A is dense if for any a < b there is $c \in A$ with a < c < b. For example, we have shown that \mathbb{Q} and \mathbb{Q}^c are both dense.

We say that $A \subseteq \mathbb{R}$ is nowhere dense if for any a < b there are c and d such that a < c < d < b and $A \cap (c, d) = \emptyset$.

- a) Give an example of a set that is infinite but nowhere dense.
- b) Give an example of a set that is neither dense nor nowhere dense. Suppose A_1, A_2, \ldots are nowhere dense sets.
- c) Construct a sequence of intervals $I_0 \supseteq I_1 \supseteq I_2 \dots$ such that $I_n = [a_n, b_n]$ where $a_n < b_n$ and $I_n \cap A_n = \emptyset$ for $n = 1, 2, \dots$
 - d) Use the construction from b) to conclude that $\mathbb{R} \neq \bigcup_{i=1}^{\infty} A_i$.

You have proved that \mathbb{R} is not a countable union of nowhere dense sets. This is called the *Baire Category Theorem*.