Due Friday September 19

Do the following problems from Abbott’s *Understanding Analysis* and problems 1) and 2) below.

Exercise 2.3.3
Exercise 2.3.8

1) Suppose \(a_n \geq 0 \) for all \(n \).
 a) Prove that if \(\lim a_n = 0 \), then \(\lim \sqrt{a_n} = 0 \).

Suppose \(\lim a_n = a > 0 \).
 b) Prove that there is \(r > 0 \) and \(N \in \mathbb{N} \) such that \(\sqrt{a_n} + \sqrt{a} \geq r \) for all \(n \geq N \).
 c) Prove that \(\lim \sqrt{a_n} = \sqrt{a} \). Hint: Note that

\[
|\sqrt{a_n} - \sqrt{a}| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}}.
\]

2) (Cesaro Means) Suppose \(\lim x_n = x \). Let \(y_n = \frac{x_1 + x_2 + \cdots + x_n}{n} \). This exercise will prove that \(\lim y_n = x \).

Fix \(\epsilon > 0 \).
 a) Prove that there is \(N_1 \) such that

\[
\sum_{i=1}^{n} \frac{|x_i - x|}{n} < \frac{\epsilon}{2}
\]

for all \(n \geq N_1 \).
 b) Prove that there is \(N_2 \) such that

\[
\sum_{i=1}^{N_1-1} \frac{|x_i - x|}{n} < \frac{\epsilon}{2}
\]

for all \(n \geq N_2 \).
 c) Finish the proof by showing that if \(N = \max(N_1, N_2) \), then \(|y_n - x| < \epsilon \) for all \(n \geq N \).