Math 413 Analysis I

Problem Set 6

Due Friday October 3

Do the following problems from Abbott's *Understanding Analysis*.

Exercise 3.2.3

Exercise 3.2.9

Exercise 3.2.12

- 1) If $A \subseteq \mathbb{R}$, then $x \in A$ is an *interior point* of A if $V_{\epsilon}(a) \subseteq A$ for some $\epsilon > 0$. Let A° be the set of interior points of A. We call A° the *interior* of A.
 - a) Prove that A° is open.
- b) Suppose O is open and $O \subseteq A$. Prove that $O \subseteq A^{\circ}$. Thus A° is the largest open subset A.
 - c) Prove that

$$(A^{\circ})^{c} = \overline{A^{c}}.$$

[Recall: B^c is the complement of B, that is $B^c = \{a \in \mathbb{R} : a \not\in B\}$.]