Due Friday October 3

Do the following problems from Abbott’s *Understanding Analysis*.

- Exercise 3.2.3
- Exercise 3.2.9
- Exercise 3.2.12

1) If $A \subseteq \mathbb{R}$, then $x \in A$ is an *interior point* of A if $V_{\epsilon}(a) \subseteq A$ for some $\epsilon > 0$. Let A° be the set of interior points of A. We call A° the *interior* of A.
 a) Prove that A° is open.
 b) Suppose O is open and $O \subseteq A$. Prove that $O \subseteq A^\circ$. Thus A° is the largest open subset A.
 c) Prove that
 $$(A^\circ)^c = \overline{A^\circ}.$$
[Recall: B^c is the complement of B, that is $B^c = \{a \in \mathbb{R} : a \not\in B\}$.]