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Preface

These notes are a supplement for the “standard undergraduate course” in Analysis,
Math 413 and 414, at the University of Illinois at Chicago. The aim is to present
a more general perspective on the incipient ideas of topology encountered when ex-
ploring the rigorous theorem–proof approach to the results of Calculus. There is no
attempt to make these notes comprehensive. Rather, the goal is to make them an
extension of the course material, and to be read as such.

The “Three Hard Theorems” in Chapters 7 and 8 of M. Spivak’s
Calculus (listed as Theorems 1,2 and 3 in the Appendix) initiate the student to
the ideas of topology. Sections 1–9 of these notes develop these ideas explicitly, and
give the “topological” statements and proofs of the theorems.

In section 10, we discuss uniform continuity and give the proof that a continuous
function on the closed interval is uniformly continuous (Theorem 4 in the Appendix).
The proof is an immediate consequence of the compactness of the closed interval [a, b].
This material is contained in the Appendix to Chapter 8 of Calculus.

The highlight of the notes are a sequence of eaxamples and results, which are funda-
mentally deeper than the introductory ideas of the first ten sections. These ideas are
all standard in more advanced textbooks on topology, but one of the ideas of these
notes is that for R, their proofs are readily accessible, and follow very naturally from
the basic ideas already developed for the proofs of the basic theorems of topology in
calculus. In particular, these notes include

• the construction of the Cantor Set;
• the construction of the Cantor Function;
• the characterization of which functions are Riemann integrable;
• a self-contained proof of the Baire Category Theorem for R;
• the proof that the sets of points of continuity for a function are a Gδ set, hence
cannot be the rational numbers;

• a proof of the existence of solutions to first order differential equations using
the contraction mapping principle;

• a proof of the implicit function theorem using the contraction mapping princi-
ple.

Presenting these more advanced results in an easily accessible is our second goal, and
hopefully the notes comes close to achieving this. We also hope that this broader
perspective will be very useful when studying calculus in more general settings like
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ii PREFACE

Rn, and serve as a gentle introduction to a graduate course in real analysis and
measure theory.

The general references at the end of the notes provide further reading for those inter-
ested in pursuing more of point-set topology.



CHAPTER 1

The Topology of R

1. Open and Closed Sets

Definition 1.1 We say that U ⊆ R is open if for all x ∈ U , there is ε > 0 such that
(x− ε, x+ ε) ⊆ U . That is, if |x− y| < ε then y ∈ U .

Intuitively, if U is open and x ∈ U , then every y that is sufficiently close to x is also
in U .

For example, if a < b, then (a, b) is open. To show this, suppose that x ∈ (a, b), and
let ε ≤ min(x− a, b− x). If |x− y| < ε, then y ∈ (a, b), so (x− ε, x+ ε) ⊂ (a, b).

It is also easy to see that R is open, and that (−∞, a) and (a,+∞) are open for any
a ∈ R.

The emptyset ∅ is also open: since ∅ has no elements, it is vacuously true that every
element of ∅ has a neighborhood contained in ∅.

Lemma 1.2. [an arbitrary union of open sets is open]
If U and V are open subsets of R, then U ∪V is open. More generally, if I is a set (it

can even be an uncountable set) and Ui ⊆ R is open for each i ∈ I, then W =
⋃

i∈I

Ui

is open.

Proof: We prove the more general case. Suppose x ∈ W =
⋃

i∈I

Ui. Then there is i ∈ I

such that x ∈ Ui. Since Ui is open, there is an ε > 0 such that (x−ε, x+ε) ⊆ Ui ⊆ W .
¤

The proof above does not use that I is a finite set – I can be infinite, or even
uncountable – an arbitrary union of open sets is open.

For example (n, n+ 1) is open for all n ∈ Z. Thus

R \ Z =
⋃

n∈Z

(n, n+ 1)

is open.

Lemma 1.3. [a finite intersection of open sets is open]
Suppose U and V are open subsets of R. Then U ∩ V is open. More generally,
if U1, U2, . . . , Un are open sets, then U1 ∩ · · · ∩ Un is open.
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2 1. THE TOPOLOGY OF R

Proof: Suppose x ∈ U ∩ V . Since U and V are open there are ε1 and ε2 such
that (x − ε1, x + ε1) ⊆ U and (x − ε2, x + ε2) ⊆ V . Let ε = min(ε1, ε2). Then
(x− ε, x+ ε) ⊆ U ∩ V . The proof that U1 ∩ · · · ∩ Un is open follows similarly. ¤

It is not true that an arbitrary intersection of open sets is open. For example, let Un

be the interval (− 1
n
, 1
n
) for n = 1, 2, . . . . Then

∞
⋂

n=1

Un = {0} and {0} is not open. The

rule is that a finite intersection of open sets is open.

Definition 1.4 We say that E ⊆ R is closed if R− E is open.

Since R and ∅ are open, they are also both closed. If a < b, then [a, b], (−∞, a] and
[b,+∞) are closed.

Lemma 1.5. [an arbitrary intersection of closed sets is closed]
If E and F are open subsets of R, then E ∩ F is closed. More generally, if I is a
set (it can even be an uncountable set) and Ei ⊆ R is closed for each i ∈ I, then

W =
⋂

i∈I

Ei is closed.

Proof:
R−
⋂

i∈I

Ei =
⋃

i∈I

(R− Fi)

Since each R− Fi is open,
⋂

i∈I

Fi is closed by Lemma 1.2. ¤

Lemma 1.6. [a finite union of closed sets is closed]
Suppose E and F are closed subsets of R. Then E ∪ F is closed. More generally, if
E1, E2, . . . , En are closed sets, then E1 ∪ · · · ∪ En is closed.

Proof: E and F closed =⇒ R \ E and R \ F open. By Lemma 1.3

R \ (E ∪ F ) = (R \ E) ∩ (R \ F )

is open, hence E ∪F is closed. The proof that E1 ∪ · · · ∪En is closed is similar. ¤

Lemma 1.7. Suppose E ⊆ R is closed. If E is bounded above and β = supE, then
β ∈ E. Similarly, if E bounded below and α = inf E, then α ∈ E.

Proof: Suppose for contradiction that β 6∈ E. Since R − E is open, there is ε > 0
such that if (β−ε, β+ε) ⊂ R−E, or |x−β| < ε =⇒ x 6∈ E. But then if z ∈ (β−ε, β)
then z is also an upper bound for X, contradicting the fact that β is the least upper
bound.

The proof that the greatest lower bound α ∈ E is similar. ¤



3. CONTINUOUS FUNCTIONS 3

2. A topology for R

A topology for a set X is a collection of subsets of X, T = {U | U ∈ T } which
satisfies three axioms:

• ∅, X ∈ T – the emptyset and the entire set belong to T .

• If {Ui | i ∈ I} ⊂ T then
⋃

i∈I

Ui ∈ T – the union of arbitrarily many sets in T

belongs to T .
• If U, V ∈ T then U ∩ V ∈ T – the intersection of a finite numbers of sets in T
belongs to T .

We have seen one example of this – the open sets in R form a topology for R. This
is called the metric topology, because the open sets are defined using the distance
function on R. Based on this example, we say that a set U ∈ T is an open set for T .

Can you construct another topology on R? There are two other topologies on R
whose definitions are “guess-able”, and neither is the metric topology. That is, an
“open set” fr the new topology need not be open in the ε sense – it need not contain
an open interval about its points. (The idea of these other two topologies can be
defined for any set X, not just for for R.)

A set X with a topology T is called a topological set, or space. We denote this by
(X, T ).

The idea of a topological space lets us define continuity of a function and conver-
gence of a sequence without mentioning ε or δ anywhere. There are many important
applications of this idea which extends the ε–δ method.

3. Continuous functions

Recall the definition of a continuous function f : R → R:

Definition 3.1 [ε-δ definition of continuous function]
f is continuous at a if for all ε > 0, there exists δ > 0 so that

|x− a| < δ =⇒ |f(x)− f(a)| < ε

f is continuous (on R) if it is continuous at every a ∈ R.

This definition is good for some applications, but for others, it can be awkward,
and hard to use in proofs. We show there is another, equivalent meaning to “f is
continuous” using open sets.

Recall that if f : R → R and X ⊆ R, then

f−1(X) = {a ∈ R : f(a) ∈ X}.
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Proposition 3.2. [open set definition of continuous function]
Let f : R → R. Then f is continuous if and only f−1(U) is open whenever U ⊆ R is
open.

Proof: Suppose f is continuous. Let U ⊆ R be open and let a ∈ f−1(U). We need
to show there is an interval around a contained in f−1(U). Now, f(a) ∈ U and U is
open, so there is ε > 0 such that (f(a)− ε, f(a)+ ε) ⊆ U . Since f is continuous there
is δ > 0 such that |x− a| < δ =⇒ |f(x)− f(a)| < ε. In particular, if |x− a| < δ, then
f(x) ∈ U . Thus (a − δ, a + δ) ⊆ f−1(U) which is what we wanted to show. This is
true for every a ∈ f−1(U), so f−1(U) is open.

Conversely, let a ∈ R and ε > 0 and set U = (f(a)−ε, f(a)+ε). Since f−1(U) is open
and f(a) ∈ U , we can find δ > 0 such that (a − δ, a + δ) ⊆ f−1(U). In other words,
|f(x)− f(a)| < ε for all x such that |x− a| < δ. Thus f is continuous as defined by
Definition 3.1. ¤

Here is an application of this alternate definition:

Proposition 3.3. Suppose that f : R → R and g : R → R are continuous functions.
Then the composition f ◦ g : R → R is continuous.

Proof: Let U ⊂ R be open. Then f ◦ g−1(U) = g−1(f−1(U)).

Since f is continuous, the set f−1(U) is open.

Since g is continuous, the set g−1(f−1(U)) is open.

But this shows f ◦ g−1(U) is open, which was to be proved. ¤

We can also define continuous function in terms of closed sets. On occasion, this
alternate definition is more useful that the definition using open sets.

Lemma 3.4. [closed set definition of continuous function]
If f : R → R, then f is continuous if and only if f−1(E) is closed for every closed
E ⊆ R.

Proof: First note that for any Y ⊆ R

x 6∈ f−1(Y )⇔ f(x) 6∈ Y ⇔ x ∈ f−1(R \ Y ).

We will use both directions of Proposition 3.2.

(⇒) Suppose f is continuous and X ⊆ R is closed. Then R \ X is open and R \
f−1(X) = f−1(R \X) is open. Thus f−1(X) is closed.

(⇐) Suppose f−1(X) is closed for every closed X ⊆ R. Let U ⊆ R be open. Then
R \ U and R \ f−1(U) = f−1(R \ U) are closed. Thus f−1(U) is open and f is
continuous. ¤
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Let (X, T ) and (Y,S) be topological spaces. So T is a topology for X, and S is a
topology for Y .

Definition 3.5 [general definition of continuous function]
A map f : X → Y is continuous (with respect to the topologies T ,S) if for every
U ∈ S the set f−1(U) ∈ T .

For the usual metric topology on R, this definition is the above reformulation of the
meaning of continuous. Here is an example of the more general notion of continuity:

Example 3.6 Let X = {f : [0, 1] → R} be the collection of all functions on the
interval [0, 1]. The set X can also be written in power notation as X = R[0,1] – it is
a very big set. The continuous functions C[0, 1] = {f : [0, 1] → R | f is continuous}
is a subset of X.

Given a function f ∈ X and ε > 0, define the subset of X

B(f, ε) = {g : [0, 1]→ R | ∀ x ∈ [0, 1], |g(x)− f(x)| < ε}

A set U ⊂ X is open if

∀ f ∈ U, ∃ ε > 0 such that B(f, ε) ⊂ U

It is an exercise that this defines a topology forX, and also by restricting it, a topology
on the set C[0, 1] of continuous functions. This is called the uniform topology.

Here is a nice exercise. Define a function

I : C[0, 1]→ R, I(f) =
∫ 1

0

f(x) dx

Then I : C[0, 1]→ R is a continuous function for the uniform topology.

4. Continuity and sequences

A sequence is a set function a : N → R. It is usually written by listing its values
{a1, a2, a3, . . . }, or just by {an} for short where it is understood that the subscript n
takes on the values of the positive integers. Sometime, a sequence will start at some
subscript n which is not 1. For example, we write

{an | n = 5, 6, 7, . . . } = {a5, a6, a7, . . . }

The set of values of a sequence {an} define a subset A ⊂ R – this is the range of
the function a : N → R. But the sequence is different from its set of values, even
though we write the sequence as {a1, a2, a3, . . . } which looks like a set of values. For
example, the set of values for the sequence {1,−1, 1,−1, . . . , (−1)n+1, . . . } is just the
set A = {1,−1}.

We give two definitions of the limit of a sequence. The first uses ε–δ, while the second
is in terms of open sets in the topology of R. They are equivalent for R, but the
second definition is can be made to work for any topological space (X, T ), so we state
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a general third version also. In any case, we say that {an} is a convergent sequence
with limit L.

Definition 4.1 A sequence {an} in R has a limit L ∈ R, written
lim
n→∞

an = L, or just an → L, if

∀ ε > 0, ∃ N such that n > N =⇒ |an − L| < ε

Definition 4.2 A sequence {an} in R has limit L ∈ R if

U ⊂ R, L ∈ U & U open, ∃ N > 0, n > N =⇒ an ∈ U

Definition 4.3 Let (X, T ) be a topological space. A sequence {an} ⊂ X has limit
L ∈ X if

U ⊂ X, L ∈ U & U ∈ T , ∃ N > 0, n > N =⇒ an ∈ U

A continuous function maps the points of a convergent sequence into the points of a
convergence sequence:

Theorem 4.4. Let {an} is a convergent sequence with limit L, and suppose f(x) a
continuous at x = L. Then the sequence {bn = f(an)} is convergent with limit f(L).

Proof: Given ε > 0 we need to find N such that n > N implies |f(an)− f(L)| < ε.
Since f is continuous at L, there exists δ > 0 so that |x−L| < δ =⇒ |f(x)−f(L)| < ε.
Since lim

n→∞
an = L, for δ > 0 given, there exists N so that n > N =⇒ |an − L| < δ.

Then

n > N =⇒ |an − L| < δ =⇒ |f(an)− f(L)| < ε⇐⇒ |bn − f(L)| < ε

¤

There is a converse to this result, which often is the best (easiest) way to show a
function is not continuous at some point:

Theorem 4.5. Suppose that f(x) is defined on an interval (a, b) containing the point
L, and for every convergent sequence {an} a with limit L, the sequence {bn = f(an)}
is convergent with limit f(L). Then f is continuous at x = L

Proof: We will prove the contra-positive: if f(x) is not continuous at x = L, then
there is a sequence {an} such that f(an) does not have limit f(L). Assume f(x) is
not continuous at x = L. Then there exists some fixed ε > 0 so that for every δ > 0,
there is some point |x − L| < δ with |f(x) − f(L)| ≥ ε. For each integer n > 0, set
δ = 1/n and choose a point an so that |an − L| < 1/n with |f(an) − f(L)| ≥ ε. .
Then |an − L| < 1/n but |f(an)− L| ≥ ε.
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Claim: lim
n→∞

an = L

Given any δ > 0 there exists some N > 0 such that 1/N < δ. Then for n > N ,

|an − L| < 1/n =⇒ |an − L| < 1/N =⇒ |an − L| < δ

So now we have produced a convergent sequence {an} with limit L, yet the sequence
{bn = f(an)} cannot have limit f(L) as there exists an ε > so that for each n,
|bn − L| ≥ ε. ¤

5. Connected Sets

Definition 5.1 We say that X ⊆ R is connected if for any open sets U, V ⊂ R such
that

X ⊆ U ∪ V, U ∩X 6= ∅, V ∩X 6= ∅ =⇒ U ∩ V 6= ∅

That is, we cannot cover X by two disjoint open subsets of R, both of which intersect
X.

Definition 5.2 We say that X ⊆ R is convex if a, b ∈ X =⇒ [a, b] ⊆ X.

For the line, these two notions are the same.

Lemma 5.3. Let X ⊆ R. Then X is connected ⇐⇒ X is convex.

Proof: (=⇒) Suppose X is connected but not convex; we show this yields a con-
tradiction. Then there are a, b ∈ X with [a, b] 6⊂ X, hence there is a < c < b such
that c 6∈ X. Let U = {x ∈ R | x < c} and V = {x ∈ R | x > c}. Then U and V are
disjoint open sets such that a ∈ U , b ∈ V and X ⊆ U ∪V . Thus X in not connected.

(⇐=) We give a proof by contradiction which uses the Intermediate Value Theorem.

Assume X is not connected, so there are open sets U and V such that

X ⊆ U ∪ V, U ∩X 6= ∅, V ∩X 6= ∅, U ∩ V = ∅

Suppose there are points a, b ∈ X such that a < b, a ∈ U and b ∈ V (the reverse case
b < a is similar.) Since X is convex, [a, b] ⊂ X.

Let f : [a, b] → R by f(x) =

{

0 if x ∈ U
1 if x ∈ V

. Since x ∈ [a, b] ⊂ X is in either U or

V , but never both, f is a well defined function.

Claim: f : [a, b]→ R is continuous.

Let c ∈ [a, b], then either f(c) = 0 or f(c) = 1, so we check each possibility. Suppose
f(c) = 0, then x ∈ U and there is δ > 0 such that (c− δ, c+ δ) ⊆ U . Thus f(x) = 0
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for all x ∈ I ∩ (c− δ, c+ δ) and f is continuous at c. A similar argument shows that
if f(c) = 1, then c ∈ V and f is continuous at c. Thus f is continuous.

Since f(a) = 0 and f(b) = 1, by the Intermediate Value Theorem, there is c between
a and b such that f(c) = 1

2
, but this is impossible, as the values of f(x) are 0 or 1

only. ¤

Corollary 5.4. Suppose a, b ∈ R with a < b. The following sets are all connected:
R, {a}, [a, b], (a, b), (a, b], [a, b), (a,+∞), [a,+∞), (−∞, a), and (−∞, a].

Proof: All of these sets are convex. ¤

The above proof that X ⊂ R convex implies X is connected is the simplest, but
depends upon the Intermediate Value Theorem which is a deep consequence of the
Least Upper Bound Axiom of the real numbers. It is also possible to prove Lemma 5.3
directly using the Least Upper Bound Axiom for the real numbers (see the proof of
Theorem 6.2.8 in Sutherland) though the proof is not as simple. The advantage is
that one can then use Lemma 5.3 to prove the Intermediate Value Theorem. We show
how to relate these two ideas.

If f : R → R, then the image of f is the set f(X) = {f(x) | x ∈ X}.

Theorem 5.5. If f : R → R and X ⊆ R is connected, then f(X) is connected, and
hence convex.

Proof: Suppose that f(X) ⊂ R is not connected. Then there are open sets U and
V such that f(X) ⊆ U ∪ V , f(X) ∩ U 6= ∅, f(X) ∩ V 6= ∅ and U ∩ V = ∅. By
Proposition 3.2, f−1(U) and f−1(V ) are open. It is easy to check that:

i) X ⊆ f−1(U) ∪ f−1(V ),

ii) f−1(U) ∩X 6= ∅ and f−1(V ) ∩X 6= ∅, and

iii) f−1(U) ∩ f−1(V ) = ∅.

This contradicts the fact that X is connected. ¤

Theorem 5.5 is a generalization of the Intermediate Value Theorem. Suppose f : [a, b]→
R and f(a) < 0 < f(b). By Theorem 5.5 f([a, b]) is connected, hence convex. Thus
for all points z with f(a) < z < f(b) there is some c ∈ [a, b] such that f(c) = z. In
particular, for z = 0, there must be some c ∈ [a, b] with f(c) = 0. Since f(a) < 0 and
f(b) > 0, c 6= a, b so a < c < b. ¤
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6. Compact Sets

The idea of a compact set is maybe one of the ideas that separates “Analysis” from
“Calculus”. It is a fundamental concept, which gets used in many ways. One principle
is that “a continuous function on a compact set is akin to an arbitrary function on a
finite set.” The ideas in this section appear repeatedly in proofs in analysis, usually in
different chapters or contexts. Compactness is the common concept which has been
extracted. Think of it as the “vanilla” that gets added to many proofs to give them
zest!

Definition 6.1 Let (X, T ) be a topological space. An open cover for a subset E ⊂ X

is a collection of open sets {Ui ⊂ X | i ∈ I} so that E ⊆
⋃

i∈I

Ui.

The open sets Ui do not have to be contained in E, and usually are not. The index
set I can be any set, countable or uncountably infinite. If I is finite (resp. countable),
then {Ui ⊂ X | i ∈ I} is called a finite (resp. countable) open cover of E.

Definition 6.2 Let (X, T ) be a topological space. We say that E ⊆ X is compact if
whenever {Ui | i ∈ I} is an open cover of E, there is a finite subset I0 ⊆ I such that
{Ui | i ∈ I0} is also an open cover of E.

In other words, E is compact if every open cover has a finite subcover.

These are general definitions - we now consider only the case X = R, where com-
pactness has a much more concrete description. First, an open set U ⊂ R is always
countable union of intervals. An open cover of a set E is then a collection of open
sets U whose union contains E.

Here is one of the basic examples. One way to get an open cover of a set E is to chose
for each x ∈ E some εx > 0, then Ux = (x− εx, x+ εx) is open in R, and the collection
{Ux | x ∈ E} contains E in its union – the index set I = E itself. The size of the
intervals does not matter, since x ∈ (x− εx, x+ εx) no matter what εx > 0 is. If E is
compact, then any such collection of open sets must contain a finite subcover which
also contains E. That is, if E is compact, there must be points {x1, x2, . . . , xn} ⊂ E
such that

E ⊂ Ux−1 ∪ · · · ∪ Uxn
= (x1 − ε1, x1 + ε1) ∪ · · · ∪ (xn − εn, xn + εn)

The amazing fact about R is that E ⊂ R is compact ⇐⇒ E is closed and bounded.
We prove this in three steps.

Lemma 6.3. E ⊆ R compact =⇒ E bounded, i.e. there is a number M such that
|x| < M for all x ∈ E.

Proof: For each n ∈ N, let Un = (−n, n). Then {Un | n ∈ N} is an open cover of E
(the union is R, so contains E). E compact implies there is a finite subset of integers
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{n1, n2, . . . , nk} ⊂ N so that E ⊆
k
⋃

i=1

Uni
. Set M = max{n1, . . . , nk}, the largest

of the finite set of integers. The union of the (−ni, ni) is just the interval (−M,M)
hence

x ∈ E =⇒ x ∈ (−M,M) =⇒ |x| < M ¤

Lemma 6.4. E ⊆ R compact =⇒ E closed.

Proof: We will show that R−E is open. Suppose a 6∈ E. For all n ∈ N with n > 0,
let

Un = {x | |x− a| >
1

n
} = (−∞, a−

1

n
) ∪ (a+

1

n
,+∞)

Then Un is open and
∞
⋃

n=1

Un = R− {a} ⊃ E. Thus {Un | n > 0} is an open cover of

E. Since E is compact, there is a number N such that

E ⊆
N
⋃

n=1

Un = (−∞, a−
1

N
) ∪ (a+

1

N
,+∞)

Choose ε > 0 such that 0 < ε < 1
N
. Then

(a− ε, a+ ε) ∩ E ⊂ (a− ε, a+ ε) ∩

(

(−∞, a−
1

N
) ∪ (a+

1

N
,+∞)

)

= ∅

so (a− ε, a+ ε) ⊆ R− E. This shows that R− E is open, hence E is closed. ¤

Together, these two lemmas show E ⊆ R compact =⇒ E closed and bounded. We
need to prove the converse is true; the first step is to show that a closed and bounded
interval is compact.

Theorem 6.5. [Heine-Borel] The closed interval [a, b] is compact.

Proof: Suppose {Ui | i ∈ I} is an open cover of [a, b]. The idea is to define a
the largest sub-interval of [a, b] which does have a finite subcover, then prove this
subinterval is really all of [a, b]. Let

A =

{

x ∈ [a, b] | there is I0 ⊆ I finite such that [a, x] ⊆
⋃

i∈I0

Ui

}

The initial point a ∈ A is contained in some open set Ui0 for some i0 ∈ I, so {a} has
an open covering with one set, {Ui0}. Thus, a ∈ A and A 6= ∅.

Every element of A is bounded above by b, so A is non-empty and bounded above,
hence there is a least upper bound d = supA.

Claim: d > a.
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Since Ui0 is open, there is an ε > 0 such that (a, a+ ε) ⊆ Ui0 . Then {Ui0} is an open
cover for the interval (a, a+ ε), hence (a, a+ ε) ⊆ A. This shows so supA ≥ a+ ε > a.
¤

Claim: d = b.

Suppose that d < b. Since {Ui | i ∈ I} is an open cover of [a, b], there is ` ∈ I such
that d ∈ U`. Since U` is open, there is ε > 0 such that (d− ε, d+ ε) ⊆ U`. Since d is
the least upper bound for A, we can find c such that d− ε < c ≤ d and c ∈ A.

By definition, c ∈ A implies there is a finite subset {j1, . . . , jm} ⊂ I such that
[a, c] ⊆ Uj1 ∪ · · · ∪ Ujm

.

Since we assume d < b, there is z < b such that d < z < d+ ε. Then

[a, z] ⊆ Uj1 ∪ · · · ∪ Ujm
∪ U`

This implies that z ∈ A. This contradicts the fact that d is the least upper bound for
A. ¤

Given that supA = b, we need to show there is a finite subcover of [a, b]. Let k ∈ I
such that b ∈ Uk. There is some ε > 0 such that (b − ε, b + ε) ⊂ Uk. Choose a
point z < b with b − ε < z < b. Then b = supA implies z ∈ A which implies there
is a finite subset {j1, . . . , jm} ⊂ I such that [a, z] ⊆ Uj1 ∪ · · · ∪ Ujm

. The collection
{Uj1 , . . . , Ujm

, Uk} is then a finite open cover for [a, b]. ¤

We combine the above three results to prove one of the main theorems of the topology
of the line.

Theorem 6.6. For E ⊆ R, E compact ⇐⇒ E closed and bounded.

Proof: If E is compact, then E is bounded by Lemma 6.3, and E is closed by
Lemma 6.4.

Assume that E is closed and bounded. E bounded means we can find M such that
X ⊆ [−M,M ]. We use the fact that [−M,M ] is compact to deduce that E is compact.

Let {Ui | i ∈ I} be an open cover of E. We need to find a finite subcover. E is closed
implies V = R − E is open, so {Ui | i ∈ I} ∪ {V } is an open cover of [−M,M ]. (A
point is either in E or in its complement V , so is either in the union of the cover of
E or in V .) Since [−M,M ] is compact, there is a finite subset {i1, . . . , im} ⊂ I such
that

[−M,M ] ⊆ Ui1 ∪ . . . Uim ∪ V

Then E ⊂ [−M,M ] and E ∩ V = ∅ implies E ⊆ Ui1 ∪ . . . Uim .

We have produced a finite subcover of the given open cover, as claimed. ¤

Corollary 6.7. If X ⊂ R is compact and Y ⊆ X is closed, then Y is compact.
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Proof: Since X is bounded, Y is bounded. Since Y is closed and bounded it is
compact. ¤

There is a very general version of this Theorem, which applies to any topological
space (X, T ) where there is a distance function on X so that a set U is open exactly
when it is a union of ε-balls, where the ε varies with each set. (X, T ) is called metric
topological space. The proof of the following is part of every course in point set
topology.

Theorem 6.8. Let (X, T ) be a metric topological space. E ⊂ X is compact ⇐⇒ E
is closed and bounded.

7. Sequential compactness

The definition of a compact set is novel, and it takes a while to get an intuition for
coverings by open sets. But there is another version of compactness for sets in R
which is much more easy to understand, called sequential compactness. We discuss
only the case where X = R – though all of the following holds for metric topological
spaces.

Recall that a sequence {a1, a2, a3, . . . } has a limit L if

∀ ε > 0, ∃N such that n > N =⇒ |an − L| < ε

A subsequence is a new sequence formed from {a1, a2, a3, . . . } by choosing a monotone
increasing subset of indices, {n1 < n2 < · · · }, then the subsequence is {an1

, an2
, an3

, . . . }.
For example, we get a subsequence by choosing only the odd subscripts {a1, a3, a5, . . . }.
If necessary to make things clear, you can “re-label” the sequence bk = ank

then the
subsequence is {b1, b2, b3, . . . }.

The subsequence does not have to be given by any particular rule, or have any
“regularity”. For example, if we take the index function nk = k! then the terms
of the subsequence are terms in {ak!} which are further and further spaced apart:
{a1, a2, a6, a24, a120, . . . }. Or, just choose a random sequence of increasing integers for
nk to get a random subsequence {ank

}.

A sequence {an} is said to have a convergent subsequence if there is a subsequence
{ank

} with lim
k→∞

ank
= L.

For example, the sequence {an = n} has no convergent subsequence, as every infi-
nite subsequence contains points which tend to infinity. On the other hand, for the
sequence {an = (−1)n}, both the odd and the even subsequences are convergent,
though to different limits. Here is a hard exercise: use the irrationality of π to prove
that the sequence {an = sin(n)} has a convergent subsequence.

Definition 7.1 A subset E ⊂ R is sequentially compact if every infinite sequence
{an} ⊂ E has a convergent subsequence {ank

| k = 1, 2, . . . } with lim
k→∞

ank
= L ∈ E.
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It is important part of the definition that the limit L ∈ E. Otherwise, the set (0, 1)
would be sequentially compact, for example. Here is the main result, which implies
that a subset E ⊂ R is sequentially compact if and only if it is closed and bounded.

Theorem 7.2. For E ⊂ R, E compact ⇐⇒ E sequentially compact.

Proof: (=⇒) Assume that E is compact, but there exists an infinite sequence
{an} ⊂ E with no convergent subsequence in E. We will show this implies that E is
not compact, a contradiction.

First, suppose that the set of values A =
∞
⋃

n=1

{an} of the sequence is a finite set, say

{α1, α2, . . . , αm} ⊂ E. Since the sequence {an} is infinite, there must exists some
index 1 ≤ i ≤ m for which an = αi for an infinite number of n. Then there is an
infinite subsequence which is constant, ank

= αi for all k. So we have ank
→ αi ∈ E.

This contradicts the assumption there is no convergent subsequence to L ∈ E. Thus,
we can assume that the set of values A of the sequence is an infinite subset of E.

Next, suppose that for some x ∈ E, for every ε > 0 the intersection
(x − ε, x + ε) ∩ A is an infinite set. We can then define inductively a a conver-
gent subsequence of {an}. For each positive integer n, take ε = 1/n. Chose n1 such
that an1

∈ (x − 1, x + 1) ∩ A. Assume that n1 < n2 < · · ·nk−1 have been cho-
sen. Since (x − 1/k, x + 1/k) ∩ A is an infinite set, we can choose nk > nk−1 with
ank

∈ (x− 1/k, x+ 1/k) ∩ A. It is then clear that lim
k→∞

ank
= x ∈ E.

Since we assume {an} ⊂ E is an infinite sequence with no convergent subsequence
in E, the above argument shows that for each x ∈ E, there is some εx > 0 so that
(x − εx, x + εx) contains only a finitely many terms of the sequence {an}. Hence,
A ∩ (x − εx, x + εx) is a finite set. Let Ux = (x − εx, x + εx) be the open interval
centered at x. Then the collection of open sets {Ux | x ∈ E} is an open covering of
E.

As E is compact, there exists points {x1, x2, . . . , xn} ⊂ E such that

E ⊂ Ux−1 ∪ · · · ∪ Uxn
= (x1 − ε1, x1 + ε1) ∪ · · · ∪ (xn − εn, xn + εn)

This implies that A = A ∩ E = (A ∩ Ux1
) ∪ · · · ∪ (A ∩ Uxk

).

We are given that the set of values A ⊂ E is infinite. Yet, each of the sets A ∩ Uxi

for 1 ≤ i ≤ k is finite by our previous argument, which implies that the set of values
A for the sequence {an} is a finite union of finite sets, hence is finite. This is a
contradiction.

(⇐=) We show that if E is not closed, then E is not sequentially compact, and
if E is not bounded then E is not sequentially compact. Thus, the hypotheses E
is sequentially compact implies E is closed and bounded hence E is compact by
Theorem 6.6.
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E not closed implies R−E is not open, so there exists a point x ∈ R−E so that every
ε interval about x is not contained in R−E. That is, each interval (x−ε, x+ε)∩E 6= ∅.
For ε = 1/n let

an ∈ (x− 1/n, x+ 1/n) ∩ E

then an → x ∈ R− E, so E is not sequentially compact.

E not bounded implies for every n > 0 there exists some point an ∈ E with |an| > n.
Otherwise, if there is an n with E ⊂ [−n, n] and so E would be bounded. Then the
sequence {an} has no convergent subsequence as |an| → ∞. ¤

8. Nested Interval Theorem

We give two proofs of the following important result. The first uses the Least Upper
Bound Axiom of R, while the second is more simple, and is based on the Heine-Borel
Theorem.

Theorem 8.1. [Nested Interval Theorem]
Suppose that In = [an, bn] is a non-empty closed interval for all n, and satisfies

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · . Then
∞
⋂

n=1

In 6= ∅.

The condition on the intervals is that they are all “nested”, one inside the other. The
conclusion is that there must be some point which lies in all of them - the infinite
intersection is non-empty.

Proof: If n > m, [an, bn] ⊂ [am, bm], and so am ≤ an ≤ bn ≤ bm. This implies that
the sequence of lower endpoints {an} is non-decreasing.

Also, n > m =⇒ am ≤ an ≤ bn ≤ bm implies an ≤ bm for all n,m. So, the set
{an} is bounded above by bm for all m, hence has a least upper bound α = lim

n→∞
an.

Moreover, each bm is an upper bound for the sequence {an}, so α ≤ bm as α is the
least upper bound.

Similarly, the sequence of upper endpoints {bm} is non-increasing, and an ≤ bm for
all n,m. So, the set {bm} is bounded below by an for all n, hence has a greatest lower
bound β = lim

m→∞
bm. Moreover, α ≤ bm for all m implies α ≤ β.

We thus have an ≤ α ≤ β ≤ bn for all n, or [α, β] ⊂ [an, bn] for all n. Thus,

[α, β] ⊂
∞
⋂

n=1

In and as α ≤ β the set [α, β] is not empty. ¤

Here is a second proof, which uses the compactness of closed intervals.

Proof: The interval [a1, b1] is closed and bounded, hence compact. The idea of the
proof is to assume that the infinite intersection is empty, then we produce an infinite
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open cover of [a1, b1] which must then have a finite subcover and show this gives a
contradiction.

For each n define an open set Un = (−∞, an) ∪ (bn∞) = R − [an, bn]. Note that
In ⊂ Im =⇒ Um ⊂ Un - the reverse inclusion. Also,

∞
⋃

n=1

Un =
∞
⋃

n=1

(R− [an, bn]) = R−
∞
⋂

n=1

[an, bn]

Now assume
∞
⋂

n=1

[an, bn] = ∅. Then the union
∞
⋃

n=1

Un = R. Consequently, the collection

{Un | n = 1, 2, . . . } is an open cover of [a1, b1]. Therefore, there is a finite subcover
{Un1

, . . . , Unk
}. We re-order the subscripts so they are increasing, n1 < n2 < · · · < nk

, then Un1
⊂ Un2

⊂ · · · ⊂ Unk
, so the union is just the last open set Unk

. This means

[a1, b1] ⊂ Un1
∪ · · · ∪ Unk

= Unk
= (−∞, ank

) ∪ (bnk
,∞)

This leads to a contradiction, as it implies [ank
, bnk

] ⊂ [a1, b1] ⊂ R− [ank
, bnk

]. ¤

The second proof is somewhat simpler than the first proof, but it has another, more
important advantage. The first proof uses the ordering of the line and the least upper
bound property of R. The second proof uses only the compactness property of the
initial set [a1, b1].

Georg Cantor gave the most general version of this theorem for Rmore than a hundred
years ago:

Theorem 8.2. [Nested Compact Set Theorem]
Suppose that En ⊂ R is a non-empty compact set for all n, and satisfies E1 ⊃ E2 ⊃

· · · . Then
∞
⋂

n=1

En 6= ∅.

In this form, the result is true if we just assume that En is a descending chain of
closed subsets of a compact set E1 in a a complete metric space. For example, the
Nested Compact Set Theorem is true for descending chains of closed and bounded
subsets of Rm.

9. Continuous functions on compact sets

Continuous functions on compact sets have many special properties. The first prop-
erty is a general version of the maximum/minimum principle for continuous functions
on a closed interval [a, b].

Theorem 9.1. If E ⊆ R is continuous and f : R → R is continuous, then f(E) is
compact
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Proof: Suppose {Ui | i ∈ I} is an open cover of f(X). Then f continuous implies
f−1(Ui) is open for all i ∈ I. The union of the open sets covers the image f(X) hence

X ⊆
⋃

i∈I

f−1(Ui)

This shows the collection {f−1(Ui) | i ∈ I} is an open cover of X.

Since X is compact, there is a finite I0 ⊆ I such that X ⊆
⋃

i∈I0

f−1(Ui) and so

f(X) ⊆
⋃

i∈I0

Ui. Thus {Ui | i ∈ I0} is a finite subcover of f(X). Given an open

covering {Ui | i ∈ I} of f(X), we have shown there exists a finite subcovering. Hence,
f(X) is compact. ¤

Two of the “Three Hard Theorems” in Chapter 7, 8 of the text by Spivak were about
finding the max and min of a continuous function on a closed interval [a, b]. Here is
the generalized version of these results using compactness.

Corollary 9.2. If f : R → R is continuous and E ⊆ R is compact, then there are
c, d ∈ E such that f(c) ≤ f(x) ≤ f(d) for all x ∈ E.

Proof: By Theorem 9.1, f(X) is compact.

By the Heine-Borel Theorem, f(X) is closed and bounded.

By Lemma 1.7 there is d ∈ X such that f(d) is the least upper bound of f(X).
Similarly, there is c ∈ X such that f(c) is the greatest lower bound of f(X). Thus,
f(X) ⊂ [f(c), f(d)]. That is, for all x ∈ X, f(c) ≤ f(x) ≤ f(d). ¤

Corollary 9.3. If f : R → R is continuous and E = [a, b], then there are a ≤ c, d ≤
b such that f(c) ≤ f(x) ≤ f(d) for all x ∈ E.

Proof: The closed interval [a, b] is compact by Theorem 6.5 ¤

10. Uniform Continuity

The ε–δ Definition 3.1 that f is continuous on a set X ⊂ R states

∀x ∈ X,∀ε > 0, ∃ δ > 0, such that |x− a| < δ =⇒ |f(x)− f(a)| < ε

In other words, the existence of δ is asserted after being given x and ε > 0. It can
happen that δ > 0 depends on which x is given – so the choice of δ is not uniform in
x.

The idea of uniform continuity is to demand that the choice of δ is independent of
the choice of x ∈ X. This is formulated by saying that the choice of δ precedes the
choice of x as here.
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Definition 10.1 f : R → R is uniformly continuous on X ⊂ R if

∀ε > 0, ∃ δ > 0, such that ∀x ∈ X, |x− a| < δ =⇒ |f(x)− f(a)| < ε

For example, it is proved in analysis texts that a continuous

function f : [a, b] → R is uniformly continuous. (For example, see the Appendix to
Chapter 8 of Spivak’s Calculus.) The usual proof is a least upper bound construction
which is essentially the same as the proof of the Heine-Borel Theorem 6.5. Thus, it
is no surprise that compactness and uniform continuity are related.

Theorem 10.2. If f : R → R is continuous and X ⊆ R is compact, then f is uni-
formly continuous on X.

Proof: Let ε > 0. For each a ∈ X there is δa such that

|x− a| < δa =⇒ |f(x)− f(a)| < ε/2

Let Ua = (a− δa/2, a+ δa/2). Then {Ua | a ∈ X} is an open cover of X. Since X is
compact there are a1, . . . , am ∈ X such that Ua1

, . . . , Uam
is an open cover of X. Let

δ = min{δa1
/2, . . . , δam

/2}.

Suppose b ∈ X and |x− b| < δ. There is an ai such that b ∈ Oai
. Then |b−a| < δai

/2
and |f(b)− f(a)| < ε/2. Since |x− b| < δ ≤ δai

/2 and |b− ai| < δai
/2, |x− ai| < δai

and |f(x)− f(ai)| < ε/2. Thus

|f(x)− f(b)| < |f(x)− f(ai)|+ |f(ai)− f(b)| <
ε

2
+
ε

2
= ε

and f is uniformly continuous on X. ¤

Corollary 10.3. If f : [a, b]→ R is continuous, then f is uniformly continuous on
[a, b].

The uniform continuity of f : [a, b] → R is used to give a simple proof that f is
Riemann integrable on [a, b].

11. The Cantor Set

The Cantor set X is a compact set that does not look anything like an interval. It is
an important example for many ideas of topology of R.

This set X is built by induction. We start with the unit interval [0, 1] and throw out
the middle third ( 1

3
, 2

3
). This leaves two closed intervals [0, 1

3
] and [2

3
, 1]. We next

throw out the middle third of each of those intervals and are left with four closed
intervals. We continue this way. We build a tree of intervals that looks like this:
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This is also called the “middle third” Cantor set. We describe the construction more
precisely as follows.

Let Sn be all sequences of zeros and ones of length n. A typical σ ∈ Sn is a finite
sequence of zeros and ones of length n, σ = {i1, i2, . . . , in}. The set S0 = ∅; the set
S1 has two elements, {0} and {1}; the set S2 has four elements, {0, 0}, {1, 0}, {1, 0},
{1, 1}. In general, Sn has 2

n elements.

For each σ ∈ Sn, we define inductively an interval Iσ = Ii1,i2,... ,in of length
1

3n
as

follows. For n = 0, S0 = ∅ the empty sequence. The corresponding interval is
I∅ = [0, 1].

Now, suppose that for σ ∈ Sn we have defined Iσ = [a, b], then there are two sequences
τ ∈ Sn+1 of length n+ 1 with initial segment σ, τ = {σ, 0} and τ = {σ, 1}. Then set

Iσ,0 = [a,
b− a

3
] & Iσ,1 = [

2(b− a)

3
, b]

Note that if σ is an initial segment of τ , then Iτ ⊆ Iσ. That is, if σ = {i1, i2, . . . , in}
and σ = {i1, i2, . . . , in, . . . , im}, then Ii1,i2,... ,im ⊆ Ii1,i2,... ,in .

For each n > 0, let Xn =
⋃

σ∈Sn

Iσ. The set Xn is the union of 2
n closed intervals, so is

a closed set.

Let Un be the set of points in [0, 1] that are “thrown out” by stage n: Un = [0, 1]−Xn.
There are 2n sequences in Sn, including the endpoints of [0, 1], so Un is the union of
2n− 1 open intervals. Moreover, the set Vn = Um−Un−1 is the union of 2

n−1 disjoint
open intervals, each of length 3−n. For later use, note that the 2n−1 intervals in the
set Vn can be labeled by their order in the interval [0, 1],

Vn = Vn,1 ∪ · · · ∪ Vn,2n−1

Let U =
⋃

n>0

Un be the open set which is the union of all the open intervals Vn,`, n > 0

and 1 ≤ ` < 2n.
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Definition 11.1 The Cantor set is X = [0, 1]− U =
⋂

n>0

Xn.

Here is the picture of the complements [0, 1],X1,X2,X3 and X4

What is left in the infinite intersection X is called “Cantor’s Dust” as it looks like
just a cloud of points.

It is easy to see that 0, 1 ∈ X, as these points lie in every Xn. What other numbers
are in X? Let S∞ be the set of all functions from N to {0, 1}. That is, σ ∈ S∞
corresponds to an infinite sequence {i1, i2, . . . } where each in ∈ {0, 1}. Let σ|n be
the finite sequence {i1, . . . , in}. Then we get an infinite sequence of nested closed
intervals,

Iσ|0 ⊃ Iσ|1 ⊃ Iσ|2 ⊃ . . .

where each Iσ|n has length 3
−n. By the Nested Interval Theorem 8.1, there is a unique

real number xσ ∈ [0, 1] such that xσ =
∞
⋂

n=1

Iσ|n. Since xσ ∈ Iσ|n for all n, xσ ∈ Xn for

all n, thus xσ ∈ X.

Proposition 11.2. Let G : S∞ → X by G(σ) = xσ. Then G is a one to one map
from S∞ onto X.

Proof: Suppose σ, τ ∈ S∞ and σ 6= τ . Let n be least such that σ(n) 6= τ(n). Then
Iσ|n ∩ Iτ |n = ∅. Since xσ ∈ Iσ|n and xτ ∈ Iτ |n, xσ 6= xτ . Thus G is one to one.

Suppose x ∈ X. We inductively define σ ∈ S∞ such that x = xσ. Suppose we know
σ(1), . . . , σ(n) and x ∈ Iσ|n. Since x ∈ X, x ∈ Iσ|n,i for i = 0 or 1. Let σ(n + 1) = i.
¤

The set S∞ is bijective with the set 2
N, so is an uncountable set.

The intervals Un,` which are deleted from [0, 1] to form X are called the “gaps” in the
Cantor set X. These gaps are in the complement of X in R, and it is an exercise in the
definition of X to see that each gap is an interval (a, b) where a ∈ Iσ and b ∈ Iτ for
σ, τ ∈ Sn for some n. These points a, b which are endpoints of gaps are all contained
in X. For each n there are only finitely many endpoints of gaps, so the endpoints of
gaps form a countable set. These are the “obvious” points in X. For example, when
n = 2 the endpoints of gaps are the points at the end of the intervals
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Since X is uncountable, there are many more points in X!

However, there is no open, non-empty interval (a, b) ⊂ X. If X ∩ (a, b) 6= ∅, then
for all n > 0, Xn ∩ (a, b) 6= ∅ and hence there is an interval Iσ ∩ (a, b) 6= ∅ for some
σ ∈ Sn. We can then find some m > n and τ ∈ Sm so the subinterval Iτ ⊂ Iσ with
Iτ ⊂ (a, b). Then the gaps next to the endpoints of Iτ have non-empty intersection
with (a, b). Thus, (a, b) 6= ∅ implies the intersection (a, b) ∩ (R− X) non-empty.

The Cantor set X is not connected. Given any gap Un,` and point z ∈ Un,` then
X ⊂ (−∞, z) ∪ (z,∞). Moreover, since X contains no intervals, for any open set
U if U ∩ X 6= ∅, then U ∩ X is not connected. The Cantor set is said to “totally
disconnected”.

There are many variations on the above construction – what matters only is that at
each stage, all of the closed intervals get “chopped up”, maybe into two equal pieces
like the middle third construction, or maybe into a randomly varying collection of
closed subintervals. “In nature,” which means in the study of dynamical systems, all
of these other variations of the construction occur naturally.



CHAPTER 2

Applications to Calculus

1. How “big” is the set of the rational numbers?

LetQ denote the rational numbers, and choose an orderingQ ∼= {r1, r2, r3, . . . } where rn =
pn
qn
in reduced form. Actually, we can do the following with any countable subset of

R – all we need is to order the elements in the set. For each N > 0, define the open
set

VN =
∞
⋃

n=1

(rn − 2
−(N+n), rn + 2

−(N+n))

VN is open because it is a countable union of open intervals. The set VN also contains
the set Q, that is, all of the rational numbers. The rationals are dense in R – they
approximate every real number – so maybe the set VN is just the entire line?

The surprising fact is that VN is very small – smaller than 21−N . Each interval
(rn − 2

−(N+n), rn + 2
−(N+n)) has length 2−(N+n) + 2−(N+n) = 2 · 2−(N+n). The “total

length” of V is at most the infinite sum of the geometric series

2 ·
{

2−(N+1) + 2−(N+2) + 2−(N+3) + · · ·+ 2−(N+n) + · · ·
}

=

Pick ε > 0, then choose a positive integer N > 0 so that 2−N < ε/2. It follows that
the “length” of VN is 2 · 2

−N < 2ε/2 = ε. This is surprising, or counter-intuitive, that
there is an open set smaller than ε > 0 which contains every rational number in it, as
the rational “are dense in R”. The key to thinking of this set VN is that the intervals
(rn − 2

−(N+n), rn + 2
−(N+n)) are getting very small very fast, so it is no trouble to

squeeze in more and more of them. The set of rational numbers is countable, so we
get them all.

2. The measure of a set

Consider a set X ⊂ R. One way to “measure” the size of X is to count it. This gives
three possible answers – X is finite, X is countably infinite, or X is uncountably
infinite. In the middle of the nineteenth century, Cantor proved that the set R
is uncountably infinite, so this third possibility not only makes logical sense, but
happens.

21
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Cantor’s work was motivated by the study of the sets of points X ⊂ R for which

a Fourier series F (x) =
∞
∑

n=0

{an cosnx+ bn sinnx} converges to the function f(x)

which gives rise to the coefficients. Such sets X may be ∅, finite, countably infinite,
or even uncountably infinite. What they cannot be, is a set of positive Lebesgue
measure.

The idea of Lebesgue measure was introduced around 1910. It is another way to
“measure” the size of a set. All finite sets, and even all countably infinite sets, have
Lebesgue measure zero. So a set with positive Lebesgue measure must be uncountable,
thus this is a new way to “measure” the size of very large sets. There are sets with
Lebesgue measure zero that are also uncountably infinite, so it is not just the number
of points that matters, but how these points are placed in R.

Definition 2.1 [Lebesgue measure zero sets]
We say that a subset X ⊂ R has Lebesgue measure zero, if for all ε > 0, there exists

a countable collection of open intervals Un = (an, bn) so that X ⊂
∞
⋃

n=1

(an, bn) and

∞
∑

n=1

|bn − an| < ε.

The integers have Lebesgue measure zero. In the previous section, we proved that
the rational numbers Q have Lebesgue measure 0.

The “middle third” Cantor set X ⊂ [0, 1] constructed above has Lebesgue measure
zero, even though it is bijective with the set [0, 1], so is uncountable. The proof that X
has measure zero is easy - you show that [0, 1]−X has measure 1. Since [0, 1] also has
measure 1, then 1 +m(X) = 1 implies m(X) = 0. Now, [0, 1]− X has measure equal
to the sum of the lengths of all the intervals removed, which is 1/3+2/9+4/27+ · · · .
This is 1/3 times the geometric series for r = 2/3, so has sum 1/3 · 1/(1− 2/3) = 1.

Proposition 2.2. [countable unions of measure zero sets]
Let Xn be a set of Lebesgue measure zero for n = 1, 2, 3, . . . . Then the union X =
∞
⋃

n=1

Xn has Lebesgue measure zero.

For example, a point has measure zero, so a countable unions of points (i.e., a count-
able set) has measure zero. But this proposition says more, that a countable union
of anything with measure zero has measure zero.

We don’t give the proof of the proposition, but sketch an outline. Given ε > 0, choose
an open cover for the set Xn whose length is at most ε/2

−n. This exists as Xn has
measure zero. The union of all these open sets, for all the Xn, is a countable set of
countable sets, hence is countable. The union of the open sets then covers the union
of the Xn, and have length at most ε. ¤
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The complete theory of Lebesgue measure, and especially of set with positive Lebesgue
measure, takes much more care to define and develop. For an interval [a, b], with or
without the endpoints, its Lebesgue measure is m([a, b]) = m([a, b)] = b − a. When
X is a countable union of disjoint open intervals - i.e. an open set in R, the Lebesgue
measure m(X) is the sum of the lengths of its intervals.

Here is the very briefest definition of the Lebesgue measure m(X) of X ⊂ R. First,
assume X is contained in a closed interval [a, b]. This can be accomplished by inter-
secting X with the intervals [n, n+ 1] and adding the measure of each X ∩ [n, n+ 1]

for all integers n. That is, we set m(X) =
∞
∑

n=−∞

m(X ∩ [n, n+1]) assuming that each

term exists.

Now assume X ⊂ [a, b]. Then cover X with open sets and take the least upper bound
of the length of such open covers. This is called the outer measure of X, and written
m(X). Always, 0 ≤ m(X) ≤ b− a.

Invert the set and do the same for [a, b] − X. That is, (b − a) − m(X) is the least
upper bound of the lengths of open covers of [a, b] − X. m(X) is called the inner
measure of X. Always, 0 ≤ m(X) ≤ b− a.

You can show m(X) ≤ m(X) always holds. If they are equal, then the Lebesgue
measure of X is m(X) = m(X) = m(X).

There are sets X ⊂ [0, 1] for which the inner measure is less than the outer measure,
0 = m(X) < m(X) = 1. Such a set X cannot be open or closed, and is constructed
using the Axiom of Choice. These sets are always uncountable.

3. On the functions which are Riemann integrable

Recall that a function f is Riemann integrable on [a, b] if for all ε > 0, there exists a
partition
P = {a = t0 < t1 < · · · tn = b} such that U(f,P) − L(f,P) < ε. A basic result of
Calculus is then

Proposition 3.1. f is continuous on [a, b] =⇒ f is Riemann integrable on [a, b].

Proof: f continuous implies f is uniformly continuous on [a, b]. Given ε > 0, there

exists δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| <
ε

2(b− a)
. Choose n > (b−a)/δ

then define the partition P with ti = a+ i ·∆t where ∆t = (b− a)/n. Then ∆t < δ
implies

Mi −mi = max{f(x) | ti−1 ≤ x ≤ ti} −min{f(x) | ti−1 ≤ x ≤ ti} <
ε

2(b− a)
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We obtain the estimate

U(f,P)− L(f,P) =
n
∑

i=1

(Mi −mi)∆t ≤ n ·
ε

2(b− a)
·
(b− a)

n
= ε/2 < ε ¤

But it is well known that the converse to this is false – if f is a function which is
continuous at all but a finite number of points of [a, b], then f is Riemann integrable
on [a, b].

Recall that Cf is the set of points where f is continuous, and then we set Df−R−Cf

which is the set of points where f is discontinuous. If Df ∩ [a, b] is empty or finite,
then f is Riemann integrable on [a, b]. The question is, how bad (large) can Df be if
f is Riemann integrable? This was answered by Lebesgue himself:

Theorem 3.2. A bounded function f : [a, b]→ R is Riemann integrable ⇐⇒ Df has
Lebesgue measure zero.

Proof: The set Df is the complement of Cf =
∞
⋂

n=1

Un, so if we set Dn = (R− Un)∩

[a, b] then

D = Df ∩ [a, b] =
∞
⋃

n=1

(R− Un) ∩ [a, b] =
∞
⋃

n=1

Dn

Assume f is integrable on [a, b]. We will show that each set Dn has measure zero.
The countable union of measure zero sets has measure zero, so this will show that D
has measure zero. Fix an integer n > 0. For any ε > 0, we produce an open covering
of Dn with measure less than ε. This will imply Dn has measure 0.

There is a partition P such that U(f,P)−L(f,P) < ε/2n. Let a = t0 < t1 < · · · tk = b
be the points of the partition. The collection of open intervals {Ji = (ti − ε/4(k +
1), ti + ε/4(k + 1)) | 0 ≤ i ≤ k} which have total length ε/2 and cover the points
{t0, t1, . . . , tn} of the partition P , hence they also cover the points of Dn ∩ P .

On the other hand, let I1, I2, . . . , Im be the open intervals of the partition P for
which (ti−1, ti) ∩ Dn 6= ∅. Given z ∈ (ti−1, ti) ∩ Dn if |f(y) − f(x)| < 1/n for
all x, y ∈ (ti−1, ti) then (ti−1, ti) ⊂ Un, which would contradict z ∈ Dn. So there
must be some x, y ∈ (ti−1, ti) with |f(y) − f(x)| ≥ 1/n. This implies the difference
Mi −mi ≥ 1/n, so (ti − ti−1)(Mi −mi) ≥ (ti − ti−1)/n for each such interval. Hence

(|I1|+ |I2|+ · · ·+ |Im|)/n ≤ U(f,P)− L(f,P) < ε/2n

which implies |I1|+· · ·+|Im| < ε/2. Thus the collection of intervals {J0, . . . , Jk, I1, . . . Im}
covers Dm and has total length at most ε/2 + ε/2 = ε.

Now assume that D has measure 0. Given ε > 0, we show there exists a partition
P = {t0 < · · · < tn} of [a, b] with U(f,P)− L(f,P) < ε.

Let M be a bound for f of [a, b]. That is, f(x) ≤M for all a ≤ x ≤ b.
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Choose n > 2(b − a)/ε which implies (b − a)/n < ε/2. The set Dn ⊂ D so Dn has
measure 0, hence there is a covering of Dn by open intervals {Iα} with length less
than ε/4B. Since Un is open, Dn = [a, b] ∩ (R− Un) is a closed and bounded set. It
follows that there is a finite subset {Iα1

, Iα2
, . . . , Iαk

} ⊂ {Iα} of the intervals which
also covers Dn. The total length of the intervals {Iα1

, Iα2
, . . . , Iαk

} is at most ε/4B.

Let I denote the open set I =
k
⋃

i=1

Iαi
.

For all points z ∈ [a, b]−I, z 6∈ I =⇒ z ∈ Gn so there is an interval (az, bz) containing
z such that x, y ∈ (az, bz) =⇒ |f(x)− f(y)| < 1/n.

The collection of open intervals {(az, bz) | z ∈ [a, b] − I} covers the set [a, b] − I.
This latter set is closed and bounded, hence is compact. So, there is a finite subcover
by intervals Ji, . . . , Jm. Let P be the partition formed from the endpoints of all the
intervals Ji and Iαi

. Then

U(f,P)− L(f,P) ≤ 2Bε/4B + (b− a)/n < ε/2 + ε/2 = ε

We are done. ¤

4. Baire category

There is yet another way to measure how big a set is, called its Baire category. The
idea of the Baire category of a set may be the most subtile idea of these notes. It
deserves a much more extensive discussion, but as the concept arises in the next
section, we explain the definition here.

Consider a set A ⊂ R. A point x ∈ A is an interior point if there is some ε > 0 so
that (x− ε, x + ε) ⊂ A. For example, every point in an open set is an interior point
– that is just the definition of an open set. The interior points of [a, b] is the open
interval (a, b).

We say a set A has no interior if the set of interior points is empty. In other words,
this means that for any x ∈ A and all ε > 0, the interval (x− ε, x+ ε) intersects the
complement of A. A finite set has no interior.

For the Cantor set X, there are no interior points. To prove this is an exercise –
the Cantor set is constructed by removing “middle thirds”, and at stage n of the
construction, the lengths of the closed intervals remaining are all 1/3n, so decreases
to zero with n. If some interval (a, b) ⊂ X we get a contradiction, as the length of
(a, b) is b− a which does not go to zero with n.

A closed set with no interior points is said to be of first category. The general set of
first category is a countable unions of such sets.
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Definition 4.1 A set X ⊂ R is of the first category if it equals the countable union

of closed sets in R, X =
∞
⋃

n=1

Xn where each closed set Xn has no interior. If X is not

of the first category, then X is said to be of the second category.

There is another way to view of sets of the Baire first category. Recall that a setX ⊂ R
is dense means that for every open interval (a, b), the intersection X∩(a, b) 6= ∅. Since
every open set is the union of open intervals, this condition for intervals is equivalent
to the condition that for every non-empty open set U ⊂ R, the intersection X∩U 6= ∅.

Lemma 4.2. A has no interior points ⇐⇒ U = R− A is dense in R.

Proof: Suppose A has no interior points. We show that R − A is dense. Suppose
not, then there exists some non-empty open interval (a, b) with (R−A) ∩ (a, b) = ∅.
But this implies the interval (a, b) ⊂ A, and then all of the points of (a, b) are interior
for A. This is a contradiction, as A has no interior points.

Conversely, suppose that R−A is dense. Let x ∈ A and ε > 0. Then the open interval
(x− ε, x+ ε) is non-empty, so R−A dense implies (R−A) ∩ (x− ε, x+ ε) 6= ∅. But
this means (x − ε, x + ε) 6⊂ A for all ε > 0, which means x is not an interior point.
This is true for every x ∈ A, so A has no interior points. ¤

While an open dense set has lots of open intervals everywhere, there are no intervals
contained in its complementary set – none, anywhere.

A set with no interior points is said to be nowhere dense.

Theorem 4.3. Suppose that {Un | n = 1, 2, 3, . . . } is a countable collection of open

and dense subsets of R. Then the intersection
∞
⋂

n=1

Un is also dense in R. In particular,

it is not the empty set.

Corollary 4.4. Suppose that {An | n = 1, 2, 3, . . . } is a countable collection of

closed and nowhere dense subsets of R. Then the union
∞
⋃

n=1

An is nowhere dense in

R. In particular, it is not the entire set R.

In other words, the real line R is not the countable union of nowhere dense closed
subsets. The set R is of the second category, and a countable union of nowhere dense
closed sets is of the first category. A set of the first category is everywhere full of
“holes” as its complement is dense in R. This is why the Baire category is a type of
“size” - a set of the first category can be huge, even dense, but it is never all of R.

Proof: Assume {Un | n = 1, 2, 3, . . . } is a countable collection of open and dense

subsets of R. Given a non-empty open set (a, b) we must show that (a, b)∩
∞
⋂

n=1

Un 6= ∅.
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We will use the Nested Interval Theorem 8.1 to find a point in this intersection. We
construct the nested intervals In = [an, bn] using induction.

Chose a′, b′ with a < a′ < b′ < b. Since U1 is dense there is an x1 ∈ (a
′, b′) ∩ U1.

Since U1 is open, there is an interval x1 ∈ (a
′′, b′′) ⊂ U1. Let a1 = max{a

′, a′′} and
b1 = min{b

′, b′′}, so a < a′ ≤ a1 < b1 ≤ b′ < b. The open interval (a1, b1) ⊂ U1, and
we set I1 = [a1, b1].

Now assume for 1 ≤ i ≤ n we have points ai < bi with ai−1 < ai < bi < bi−1

and (ai, bi) ⊂ Ui. Choose a
′ < b′ with an < a′ < b′ < bn. Since Un+1 is dense,

there is an xn+1 ∈ (a
′, b′) ∩ Un+1. Since Un+1 is open, there is an interval (a

′′, b′′)
with xn+1 ∈ (a

′′, b′′) ⊂ Un+1. Let an+1 = max{a
′, a′′} and bn+1 = min{b

′, b′′}. Then
an < an+1 < bn+1 < bn and (an+1, bn+1) ⊂ Un+1. Set In+1 = [an+1, bn+1].

We have constructed nested closed intervals I1 ⊃ I2 ⊃ · · · . By Theorem 8.1, or more
precisely from its proof, the limits α = sup{an} and β = inf{bn} exist and satisfy
a < an ≤ α ≤ β ≤ bn < b for all n.

Thus, the interval [α, β] ⊂ (a, b), and [α, β] ⊂ In ⊂ Un for all n so [α, β] ⊂
∞
⋂

n=1

Un. It

follows that ∅ 6= [α, β] ⊂ (a, b) ∩
∞
⋂

n=1

Un . ¤

We earlier constructed sets VN whose Lebesgue measure is at most 2
1−N and Q ⊂ VN

for all N . The infinite intersection V =
∞
⋂

n=1

VN contains Q, but its measure is less

than ε for all ε. So, the set V contains the rational numbers and has zero measure. It
is natural to ask, does V = Q, or are there extra points in it beside Q? The following
result says there are lots of extra points.

Proposition 4.5. The set of rational numbers is not the intersection of a countable
collection of open dense subsets of R.

Proof: Let {Un} be a countable collection of open dense subsets of R. Suppose that

Q =
∞
⋂

n=1

Un – we show this leads to a contradiction.

Choose an ordering Q ∼= {r1, r2, r3, . . . } in reduced form. For each n, define the
open and dense set Wn = R − {rn}. Now, combine the two countable collections
of open and dense subsets, to get countable collection of open and dense subsets
{U1, U2, . . . ,W1,W2, . . . }. By the Baire Theorem 4.3, the intersection

∞
⋂

n=1

Un ∩
∞
⋂

m=1

Wm



28 2. APPLICATIONS TO CALCULUS

is dense in R. But the first intersection contains only the set Q, while the latter
intersection explicitly contains none of the rationals. Thus, the intersection is empty,
which is a contradiction. ¤

The proof actually shows that any countable subset X ⊂ R is not the countable
intersection of open and dense subsets. There was nothing special about the rationals,
other than they were countable.

5. On the set of points where a function is continuous

Let f : R → R be a real-valued function, and let

Cf = {x | f is continuous at x}

For example, the Dirichlet function f(x) =

{

1/q for x = p/q
0 for x irrational

is continuous

exactly on the set Cf = (R − Q) ∪ {0}, which is the set of irrational numbers plus
{0}.

We can also construct a function with Cf = R − Q – choose an ordering Q ∼=

{r1, r2, r3, . . . }, then set f(x) =

{

1/n for x = rn
0 for x irrational

In both these cases, the set of points of discontinuity, the complement R − Cf , is
countable.

The general question is, what sets can occur as Cf for some f? Does Q = Cf for some
f? Is it possible to construct a function which is continuous exactly on the rational
numbers?

Given a function f , set

Un =
⋃

{(a, b) | x, y ∈ (a, b) =⇒ |f(x)− f(y)| < 1/n}

So, Un is the union of all open intervals (a, b) so that the image f(a, b) has size less
than 1/n. As Un is the union of open intervals, it is also an open set.

Proposition 5.1. Cf =
∞
⋂

n=1

Un. Thus, Cf is a countable intersection of open sets in

R.

Proof: Given z ∈
∞
⋂

n=1

Un we show that f is continuous at z.

Given ε > 0, choose an integer n > 1/ε so 1/n < ε.

The point z ∈ Un so there is some interval (a, b) with z ∈ (a, b) ⊂ Un hence x, y ∈
(a, b) =⇒ |f(x)− f(y)| < 1/n < ε.
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Let δ = min{z − a, b− z}, so (z − δ, z + δ) ⊂ (a, b). Then

|x− y| < δ =⇒ x, y ∈ (a, b) =⇒ |f(x)− f(y)| < 1/n < ε

This shows f is continuous at z hence z ∈ Cf .

Conversely, suppose z ∈ Cf . Given any integer n > 0, by the continuity of f at z,
there exists δ > 0 such that

|x− z| < δ =⇒ |f(x)− f(y)| < 1/2n

So we take a = z − δ and b = z + δ, then

x, y ∈ (a, b) =⇒ |x− z| < δ & |y − z| < δ

=⇒ |f(x)− f(z)| < 1/2n & |f(y)− f(z)| < 1/2n

=⇒ |f(x)− f(y)| < 1/n

Therefore, z ∈ (a, b) ⊂ Un. This holds for all n, so z ∈
∞
⋂

n=1

Un. ¤

This allows us to answer the question: is there a function for which Q = Cf? If there

is such a function, then Q = Cf =
∞
⋂

n=1

Un so Q ⊂ Un for all n. This means that each

set Un is not only open, but also dense. But we showed that Q is not the intersection
of a countable collection of open dense subsets, so this is a contradiction. We have
shown:

Corollary 5.2. There is no function f with Cf = Q.

There is a modified version of this question: Given a countable collection of open sets
{Vn}, is there f with Cf = ∩Vn?

The answer is yes, and the surprising fact is that the proof is almost the same as
what we did to construct the function continuous on the irrational numbers.

Proposition 5.3. Let Vn ⊂ R be an open set for each n = 1, 2, 3, . . . . Then there is

a function f : R → R such that Cf =
∞
⋂

n=1

Vn.

Proof: The open sets Vn are not assumed to be nested, so we first define a sequence

of nested open sets whose infinite intersection is C =
∞
⋂

n=1

Vn. Set U1 = R. Set

U2 = V1 ∩ V2. For n > 2 set Un = Vn ∩ Un−1.

Then each Un is open, and they are nested: U1 ⊃ U2 ⊃ · · · .

Moreover, C =
∞
⋂

n=1

Un.
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Define f : R → R by

f(x) =







0 if x ∈ C
1/n if x ∈ Un, x 6∈ Un+1, x ∈ Q

−1/n if x ∈ Un, x 6∈ Un+1, x 6∈ Q

To show C = Cf we first show that C ⊂ Cf . That is, if x ∈ Un for every n then f is
continuous at x.

Fix x ∈ C, and let ε > 0. Choose n > 1/ε so 1/n < ε. Since x ∈ Un and Un is open,
there is a δ > 0 such that (x− δ, x+ δ) ⊂ Un. Then

|y − x| < δ =⇒ y ∈ Un =⇒ |f(y)− f(x)| = |f(y)− 0| = |f(y)| ≤ 1/n < ε

Next, we show that if x 6∈ C then f is not continuous at x, or x 6∈ Cf .

Fix x 6∈ C. Then U1 = R, so x ∈ Un for some n. Let n be the greatest integer such
that x ∈ Un but x 6∈ Un+1. Then f(x) = ±1/n. If x ∈ Q then f(x) = 1/n, otherwise
f(x) = −1/n.

Given δ > 0, suppose that x ∈ Q then there is some irrational number y ∈ (x− δ, x+
δ)∩Un as the intersection is an open set and the irrationals are dense. Then f(y) ≤ 0,
so |f(y)− f(x)| ≥ 1/n. This means that if we take ε < 1/n then for all δ > 0, there
is some y ∈ (x− δ, x+ δ) such that |f(y)− f(x)| 6< ε so f is not continuous at x.

Given δ > 0, suppose that x 6∈ Q then there is some rational number y ∈ (x− δ, x+
δ)∩Un as the intersection is an open set and the rationals are dense. Then f(y) ≥ 0,
so |f(y)− f(x)| ≥ 1/n. This means that if we take ε < 1/n then for all δ > 0, there
is some y ∈ (x− δ, x+ δ) such that |f(y)− f(x)| 6< ε so f again is not continuous at
x. ¤

For example, choose an ordering Q ∼= {r1, r2, r3, . . . }.

Set Vn = R− {rn} and apply the above construction.

The resulting f is exactly the function at the beginning of this section which is
continuous precisely at the irrational numbers.

6. Uniform convergence of functions

Suppose there is given a subset X ⊂ R and a sequence of functions {fn : X → R |
n = 1, 2, . . . } and there is a function f : X → R such that for each x ∈ X, the limit
exist lim

n→∞
fn(x) = f(x). The question is, what properties does f(x) have?

• If each fn is continuous, must f be continuous?
• If each fn is Riemann integrable, must f be Riemann integrable?
• If each fn is differentiable, must f be differentiable?

The answer is NO in general – but in the first two cases, it is yes if we demand that
the convergence is uniform.
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Definition 6.1 Let X ⊂ R and fn : X → R, n = 1, 2, . . . be a sequence of functions.
We say that {fn} converges uniformly on X to f : X → R if

∀ε > 0,∃N > 0 such that n > N =⇒ ∀x ∈ X, |fn(x)− f(x)| < ε

The point of the definition is that given ε > 0, the choice of N works for all x ∈ X.
If we put the choice of x first,

∀x ∈ X,∀ε > 0,∃N > 0 such that n > N =⇒ |fn(x)− f(x)| < ε

Here, N depends on both x and ε, and this is just the definition that ∀x ∈ X, fn(x)→
f(x).

Another way to intuitively understand uniform convergence, is to look at the graph
of the limit function y = f(x). Given ε > 0, form the strip (or tube) around the
graph, consisting of all points

Tube(f, ε) = {(x, y) | a ≤ x ≤ b & |y − f(x)| < ε}

The requirement is that for any ε > 0 there is some N so that all of the functions fn
for n > N have graphs contained in this tube. Here is a sample illustration of this:

We prove three results, corresponding to the three questions above. The first result
is that a uniformly continuous limit of continuous functions is continuous. We state
this for the restriction of the functions to some subset X ⊂ R – though in most cases,
X = [a, b].

Theorem 6.2. Let X ⊂ R and suppose {fn : X → R | n = 1, 2, . . . } is a sequence
of continuous functions which converges uniformly on X to f : X → R. Then f is
continuous on X.
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Proof: For z ∈ X and ε > 0, we need to find δ > 0 so that ∀y ∈ X, |z − y| < δ =⇒
|f(z)− f(y)| < ε.

By the definition of uniform convergence, for ε/3 there exists N > 0 such that

n > N =⇒ ∀x ∈ X, |fn(x)− f(x)| < ε/3

Fix n > N , then fn is continuous on X by assumption, so for z ∈ X, there exists
δ > 0 such that ∀y ∈ X, |z− y| < δ =⇒ |fn(z)− fn(y)| < ε. Then ∀y ∈ X, |z− y| < δ
implies

|f(z)− f(y)| ≤ |f(z)− fn(z)|+ |fn(z)− fn(y)|+ |fn(y)− f(y)|

< ε/3 + ε/3 + ε/3 = ε

Thus, ∀y ∈ X, |z − y| < δ =⇒ |f(z)− f(y)|. ¤

The second result is that a uniformly continuous limit of integrable functions is inte-
grable.

Theorem 6.3. Let {fn : [a, b] → R | n = 1, 2, . . . } be a sequence of functions which
converges uniformly on [a, b] to f : [a, b] → R. If each fn is Riemann integrable on

[a, b], then f is Riemann integrable on [a, b], and lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Proof: We will show that for any ε > 0, there is a partition P of [a, b] such that
U(f,P)− L(f,P) < ε.

Fix ε > 0, and choose N > 0 so that

n > N =⇒ ∀x ∈ [a, b], |fn(x)− f(x)| <
ε

4(b− a)

Fix n > N , then fn is Riemann integrable, so there is a partition P = {a = t0 < t1 <
· · · < tm = b} of [a, b] such that

U(fn,P)− L(fn,P) < ε/2

For each ti−1 ≤ x ≤ ti we have |fn(x)− f(x)| < ε/4(b− a) so

Mi = sup{f(x) | ti−1 ≤ x ≤ ti} ≤ sup{fn(x) | ti−1 ≤ x ≤ ti} + ε/4(b− a)
mi = inf{f(x) | ti−1 ≤ x ≤ ti} ≥ inf{fn(x) | ti−1 ≤ x ≤ ti} − ε/4(b− a)
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Then calculate

U(f,P)− L(f,P)

=
m
∑

i=1

(Mi − ni)(ti − ti−1)

<
m
∑

i=1

(sup{fn(x) | ti−1 ≤ x ≤ ti} − inf{fn(x) | ti−1 ≤ x ≤ ti}+ 2ε/4(b− a)) (ti − ti−1)

≤
m
∑

i=1

(sup{fn(x) | ti−1 ≤ x ≤ ti} − inf{fn(x) | ti−1 ≤ x ≤ ti}) (ti − ti−1) + ε/2

= U(fn,P)− L(fn,P) + ε/2 = ε/2 + ε/2 = ε

Since ε > 0 was arbitrary, this shows f is Riemann integrable.

For this ε and N , we also have |U(f,P)− U(fn,P)| < ε/2 and hence
∣

∣

∣

∣

∫ b

a

f(x) dx−

∫ b

a

fn(x) dx

∣

∣

∣

∣

≤ |U(f,P)− U(fn,P)|+ ε+ ε/2 < 2ε

Thus, the limit of the integrals is the integral of the limit. ¤

The third result gives a condition which guarantees that a uniformly continuous
limit of smooth functions is smooth. One version of this result assumes the derivative
functions f ′n are integrable on [a, b], then the proof follows easily from the Fundamental
Theorem of Calculus and Theorem 6.3 above. For example, this proof is given in
Chapter 24 of Spivak’s book “Calculus”. The theorem below assumes only that the
derivatives f ′n exists at every point. The proof is then more direct and delicate, and
uses the Mean Value Theorem. (The following proof is from the notes “Analysis From
Scratch” by Peter Kropholler.)

Theorem 6.4. Let {fn : [a, b] → R | n = 1, 2, . . . } be a sequence of continuously
differentiable functions on (a, b). Suppose that both the sequences {fn} and {f ′n}
converge uniformly to functions f and g. Then f is differentiable, and for each
x ∈ (a, b), f ′(x) = g(x). In other words, the derivative of the limit equals the limit of
the derivatives.

Proof: Fix x ∈ (a, b) We must show f ′(x) = g(x), or that

lim
y→x

f(y)− f(x)

y − x
= g(x)

Let ε > 0 be given, then we must show there is a δ > 0 such that

|y − x| < δ =⇒

∣

∣

∣

∣

f(y)− f(x)

y − x
− g(x)

∣

∣

∣

∣

< ε
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Choose N > 0 so that n > N =⇒ ∀ξ ∈ (a, b), |f ′n(ξ)− g(ξ)| < ε/4.

The functions f ′n are continuous, and converge uniformly to g, so by Theorem 6.2, g
is continuous on (a, b). Choose δ > 0 so that

|y − x| < δ =⇒ |g(y)− g(x)| < ε/4

Fix n > N . Then for any y 6= x, the Mean Value Theorem implies there exists ξ
between x and y such that

fn(y)− fn(x)

y − x
= f ′n(ξ)

Now, put all this together, for n > N and 0 < |y − x| < δ,
∣

∣

∣

∣

fn(y)− fn(x)

y − x
− g(x)

∣

∣

∣

∣

= |f ′n(ξ)− g(x)|

= |f ′n(ξ)− g(ξ) + g(ξ)− g(x)|

≤ |f ′n(ξ)− g(ξ)|+ |g(ξ)− g(x)|

≤ ε/4 + ε/4 = ε/2

We must now replace the functions fn with the limit f in this estimate, and we are
done. Fix the point y satisfying 0 < |y − x| < δ, then ε|y − x|/4 > 0 is a positive
constant. Then by the uniform convergence of fn → f we can choose n > N large
enough so that both

|f(x)− fn(x)| < ε|y − x|/4

|f(y)− fn(y)| < ε|y − x|/4

Then
∣

∣

∣

∣

f(y)− f(x)

y − x
−
fn(y)− fn(x)

y − x

∣

∣

∣

∣

< ε/4 + ε/4 = ε/2

so finally,

∣

∣

∣

∣

f(y)− f(x)

y − x
− g(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

f(y)− f(x)

y − x
−
fn(y)− fn(x)

y − x

∣

∣

∣

∣

+

∣

∣

∣

∣

fn(y)− fn(x)

y − x
− g(x)

∣

∣

∣

∣

< ε/2 + ε/2 = ε

¤
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7. The Cantor Function

Recall the Cantor set is described as the intersection X =
⋂

n>0

Xn where Xn =
⋃

σ∈Sn

Iσ

is the union of the closed intervals Iσ defined by sequences σ ∈ Sn. The set Xn is
the union of 2n closed intervals, and its complement Un in [0, 1] is the union of open
intervals

Vk = Vk,1 ∪ · · · ∪ Vk,2k−1 , k = 1, . . . , n

Then X is the complement in [0, 1] of the open set U =
⋃

n>0

Un which is the union

of all the open intervals Un,`, n > 0 and 1 ≤ ` < 2n. The Cantor function, or the
“Devil’s Staircase”, is a remarkable function Θ: [0, 1] → [0, 1] which is continuous,
onto and constant on the set U . So, Θ has a derivative on the open set U , and Θ′ = 0
there. Thus Θ′(x) = 0 for x in a set of Lebesgue measure 1, yet Θ is not constant.
Here is its graph:

We will give three constructions of this remarkable function Θ.

Construction 7.1 For each n > 0 and 1 ≤ ` < 2n, set Θ(x) =
2`− 1

2n
when

x ∈ Vn,`. For example, Θ(x) = 1/2 for x ∈ V1,1 – the first middle third (1/3, 2/3).
Then Θ(x) = 1/4 for x ∈ V2,1 – the first middle ninth (1/9, 2/9) – and Θ(x) = 3/4
for x ∈ V2,2 – the second middle ninth (7/9, 8/9). In general, on the open sets
Vn = Vn,1 ∪ · · · ∪ Vn,2n−1 , the values are

1

2n
,
3

2n
,
5

2n
, · · · ,

2n − 1

2n
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Note there are 2n−1 odd numbers less than 2n and 2n−1 open intervals in Vn. The
reason why we use odd numerators defining Θ on Vn, is that the values p/2

n for the
even numerator p = 2i`, i > 0, occur for Vk where k = n− i < n.

This defines Θ on the set U . Note that Θ is non-decreasing, and constant on open
intervals of U . Now extend Θ to all of [0, 1] by setting Θ(0) = 0, Θ(1) = 1, and
Θ(x) = sup{Θ(z) | z ≤ x & z ∈ U}.

Then Θ is clearly non-decreasing on [0, 1], so it remains to show Θ is continuous. But
this follows since the values of Θ on U is the set of all dyadic rationals in [0, 1] – the
numbers of the form p/2n. These are dense in [0, 1]. Since Θ is non-decreasing, it is
an exercise to show Θ not continuous at x ∈ [0, 1] implies there is a jump in the range
of Θ - i.e.,

lim
h→0+

Θ(x+ h)− lim
h→0−

Θ(x+ h) = c > 0

and so the range of Θ omits an interval of length c. But the image is dense, so omits
no interval. ¤

Construction 7.2 The second construction of the Cantor function Θ modifies the
above, in that we produce a sequence of continuous functions θn : [0, 1]→ [0, 1] which
converge uniformly to Θ. Here is a sequence of the graphs of the first four functions,
θ1, θ2, θ3, and θ4:

Let Θn(0) = 0 and Θn(1) = 1 for all n > 0.
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Define θ1 : [0, 1]→ [0, 1] to be 1/2 on U1 = V1,1 = (1/3, 2/3) the middle third interval,
and to be linear on the complement [0, 1]− U1. That is,

θ1(x) =







3x/2 for 0 ≤ x ≤ 1/3
1/2 for x ∈ Un, x 6∈ Un+1, 1/3 ≤ x ≤ 2/3

(3x− 1)/2 for x ∈ Un, x 6∈ Un+1, 2/3 ≤ x ≤ 1

In general, define θn on Un by specifying that on the open sets Vk = Vk,1∪· · ·∪Vk,2k−1

for 1 ≤ k ≤ n, the values of θn are

1

2k
,
3

2k
,
5

2k
, · · · ,

2k − 1

2k

Thus, θn = Θ on Un. Extend θn to the complement [0, 1]−Un by requiring that it be
continuous and linear.

The sequence {θn} is uniformly Cauchy on [0, 1]. For x ∈ Un when m,m′ > n we
have θm(x) = θm′(x) = Θ(x) is unchanging with m. For x ∈ Xn = [0, 1] − Un and
m > n, the construction yields |θm(x) − θn(x)| ≤ 2

−n. Thus, θn → Θ uniformly on
[0, 1].

Construction 7.3 The third construction is a modification of the above, but now
the functions θn are defined as the iterations of a given function. This idea is from the
paper “The Standard Cantor function is subadditive” by Josef Doboŝ, in Proceedings
of the American Math. Soc., vol. 124, 1996, pages 3425–3426.

Define the sequence of functions φn : R → [0, 1] by

φ0(x) =







0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1

φn+1(x) =

{

1
2
· φn(x) if x ≤ 2/3

1
2
+ 1

2
· φn(3x− 2) if x ≥ 1/3

It is then easy to check that φn(0) = 0 for all x ≤ 0, and φn(1) = 1 for all x ≥ 1.
Moreover, the overlapping definitions of φn+1 agree for 1/3 < x < 2/3.

Then check that φn → Θ uniformly on [0, 1].

The details to check are all left as exercises.
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8. Existence of solutions to differential equations

Suppose f(x, y) is continuous in x and y and that ∂f

∂y
exists and is continuous. Consider

the differential equation y′ = f(x, y). We say the function g(x) is a solution if
g′(x) = f(x, g(x)). If g satisfies the initial condition g(a) = b then, by the fundamental
theorem of calculus, it is equivalent that g be continuous and satisfy the integral
equation

g(x) = b+

∫ x

a

f(t, g(t)) dt. (1)

For a function g which is continuous near a, define a mapping T which takes g to a
new function Tg defined by

(Tg)(x) = b+

∫ x

a

f(t, g(t)) dt.

Then g is a solution to (1) if and only if Tg = g. The idea is to use T to construct
a sequence of functions which converges uniformly to a solution to (1). The proof of
convergence uses estimates which depend on bounds on f and ∂f

∂y
.

Theorem 8.1. Assume f(x, y) is continuous, |f(x, y)| ≤ B, and | ∂f
∂y
(x, y)| ≤ M for

points (x, y) in some rectangle R containing the point (a, b). Choose δ > 0 such that

(i) δM ≤ r < 1
(ii) If |x− a| ≤ δ and |y − b| ≤ δB, then (x, y) lies in R.

Then there is a unique function g defined for x with |x − a| ≤ δ such that g(a) = b
and g′(x) = f(x, g(x)).

Proof: Let F be the set of continuous functions g such that g(a) = b and, if
|x − a| ≤ δ, then |g(x) − b| ≤ δB. Notice that the function g0(x) = b is in F . Also
notice that if g lies in F and |x− a| ≤ δ, then

|(Tg)(x)− b| ≤

∫ x

a

|f(t, g(t))| dt ≤ |x− a| ≤ δB

so Tg lies in F . We want to prove that the sequence gn defined inductively by

g0(x) = b and gn = Tgn−1

converges uniformly.

For a function g in F , or generally for a bounded function g, define a norm

||g|| = sup{|g(x)| : |x− a| ≤ δ}.

If ||g|| = 0, then g(x) = 0 for |x− a| ≤ δ.
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If g and h are functions in F , then

1. ||g − h|| = ||h− g||,
2. ||g − h|| = 0 if and only if g = h,
3. ||h1 − h3|| ≤ ||h1 − h2||+ ||h2 − h3||.

The third property is called the triangle inequality by analogy with the formula for
distances between points in the plane. To prove it notice that

|h1(x)− h3(x)| ≤ |h1(x)− h2(x)|+ |h2(x)− h3(x)| ≤ ||h1 − h2||+ ||h2 − h3||

for any x with |x − a| ≤ δ, so the left hand side is bounded by the right hand side.
These three properties make F a metric space with the distance between g and h
given by ||g − h||.

Now, we return to the proof of the Theorem. If (x, y1) and (x, y2) are in R then, by
the mean value theorem,

|f(x, y2)− f(x, y1)| =

∣

∣

∣

∣

∂f

∂y
(x, η)(y2 − y1)

∣

∣

∣

∣

≤M |y2 − y1|. (2)

Hence, if g and h are in F and |x− a| ≤ δ, then

|(Tg)(x)− (Th)(x)| ≤

∫ x

a

|f(t, g(t))− f(t, h(t))| dt

≤ M

∫ x

a

|g(t)− h(t)| dt

≤ Mδ||g − h||

Thus ||Tg − Th|| ≤ r||g − h||. Since r < 1, T is called a contraction map; under T
points (functions) are move closer together.

For the functions gn in our sequence this implies ||g2−g1|| ≤ r||g1−g0|| and inductively

||gn − gn−1|| ≤ rn−1||g1 − g0||.

Therefore, with m < n,

||gn − gm|| ≤ ||gn − gn−1||+ · · ·+ ||gm+1 − gm||

≤ (rn−1 + · · ·+ rm)||g1 − g0||

≤ (rm + rm+1 + · · · )||g1 − g0||

≤
rm

1− r
||g1 − g0||

Since rm → 0 as m→∞, this shows the sequence gn is uniformly Cauchy and hence
converges uniformly to a continuous function g which, we can check, lies in F .
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To show that g is a solution to (1) we need to show that g is a fixed point of T . which
follows from the fact that it is a contraction map. Without using metric space theory
we may argue as follows. Since gn converges uniformly to g, it follows from (2) that
f(t, gn(t)) converges uniformly to f(t, g(t)). Then

(Tg)(x) = b +

∫ x

a

lim
n→∞

f(t, gn(t)) dt

= lim
n→∞

{b+

∫ x

a

f(t, gn(t)) dt}

= lim
n→∞

gn+1(x) = g(x)

Hence g is a solution to our differential equation.

If h were another solution, then Th = h. But

||g − h|| = ||Tg − Th|| ≤ r||g − h||

and r < 1 imply ||g − h|| = 0 and hence g = h. ¤
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9. Implicit Function Theorem

The contraction mapping technique can also be used to prove the implicit function
theorem. The equation f(x, y) = 0 is said to define the function g(x) implicitly if
f(x, g(x)) = 0. If f(a, b) = 0 we may require g(a) = b.

Theorem 9.1. Suppose f(a, b) = 0, f is continuous near (a, b), ∂f

∂y
(x, y) is continu-

ous at (a, b), and ∂f

∂y
(a, b) 6= 0. Then there is a unique continuous function g defined

for x near a with g(a) = b and f(x, g(x)) = 0. Further, if ∂f

∂x
and ∂f

∂y
are continuous

near (a, b), then g is differentiable and

g′(x) = −
∂f

∂x
(x, g(x))

/

∂f

∂y
(x, g(x)).

Proof: Let

F (x, y) = y −

(

∂f

∂y
(a, b)

)−1

f(x, y).

Then F (a, b) = b and ∂F
∂y
(a, b) = 0, so ∂F

∂y
(x, y) is small near (a, b).

Choose δ > 0 and k > 0 so that if |x − a| ≤ δ and |y − b| ≤ k, then | ∂f
∂y
(x, y)| ≤ 1

2

and, taking δ smaller if necessary, |F (x, b)− b| ≤ k
2
.

Let F be the set of continuous functions g such that g(a) = b and, if |x−a| ≤ δ, then
|g(x)− b| ≤ k.

For g ∈ F and |x− a| ≤ δ, define (Tg)(x) = F (x, g(x)). Then (Tg)(a) = b and

|(Tg)(x)− b| = |F (x, g(x))− b|

≤ |F (x, g(x))− F (x, b)|+ |F (x, b)− b|

≤ |
∂F

∂y
(x, η)| |g(x)− b|+

k

2

≤
k

2
+
k

2
= k

Hence Tg ∈ F .

T is a contraction mapping since

|(Tg)(x)− (Th)(x)| = |F (x, g(x))− F (x, h(x))|(1)

=

∣

∣

∣

∣

∂F

∂y
(x, η)

∣

∣

∣

∣

|g(x)− h(x)| ≤
1

2
|g(x)− h(x)|(2)

So

||Tg − Th|| ≤
1

2
||g − h||

Set g0(x) = b and gn+1 = Tgn. As before the sequence gn is uniformly Cauchy
and hence converges uniformly to a continuous function g. It follows from (3) that
F (x, gn(x)) converges uniformly to F (x, g(x)). Then
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F (x, g(x)) = lim
n→∞

F (x, gn(x)) = lim
n→∞

gn+1(x) = g(x).

Therefore g is a fixed point of T . This means F (x, g(x)) = g(x) and consequently
f(x, g(x)) = 0.

Now assume ∂f

∂x
and ∂f

∂y
are continuous at (x, g(x)) and let x1 be close to x with

|x1 − a| < δ.

Then f(x, g(x)) = 0 and f(x1, g(x1)) = 0, so

0 = f(x1, g(x1))− f(x, g(x))

= f(x1, g(x1))− f(x1, g(x)) + f(x1, g(x))− f(x, g(x))

=
∂f

∂y
(x1, η)(g(x1)− g(x)) +

∂f

∂x
(ξ, g(x))(x1 − x)

for some ξ between x and x1 and some η between g(x) and g(x1). Therefore

g(x1)− g(x)

x1 − x
= −

∂f

∂x
(ξ, g(x))

/

∂f

∂y
(x1, η).

Hence

g′(x) = lim
x1→x

g(x1)− g(x)

x1 − x
= −

∂f

∂x
(x, g(x))

/

∂f

∂y
(x, g(x)).

¤
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Appendix: Topological Theorems of Calculus

Theorem 1. [Intermediate Value Theorem] Let f be continuous on [a, b]. Sup-
pose that f(a) < 0 and f(b) > 0, then there exists
a < c < b such that f(c) = c.

Theorem 2. [Bounded Theorem] Let f be continuous on [a, b]. Then there exists
constants α, β such that

∀ x ∈ [a, b], α ≤ f(x) ≤ β

Theorem 3. [Max/Min Theorem] Let f be continuous on [a, b]. Then there exists
points cmax, cmin ∈ [a, b] such that

∀ x ∈ [a, b], f(cmin) ≤ f(x) ≤ f(cmax)

Theorem 4. [Uniform Continuity] Let f be continuous on [a, b]. Then f is uni-
formly continuous on [a, b]. That is,

∀ε > 0, ∃ δ > 0 such that ∀x, y ∈ [a, b], |x− y| < δ =⇒ |f(x)− f(y)| < ε

Theorem 5. [Riemann Integrable] Let f be continuous on [a, b]. Then f is Rie-
mann integrable on [a, b]. That is,

∀ε > 0, ∃ P = {a = t0 < t1 · · · < tn = b} with U(f,P)− L(f,P) < ε

Theorem 6. [Uniform Convergence] Let {fn | n = 1, 2, . . . } be a sequence of
functions which converge uniformly to f on [a, b].

• If each fn is continuous on [a, b] then f is continuous on [a, b]
• If each fn is integrable on [a, b] then f is integrable on [a, b], and

lim
n→∞

∫ b

a

fn(x) dx =

∫ n

a

f(x) dx

• If each fn is differentiable on [a, b] and f ′n converges uniformly to g on [a, b],
then f is differentiable, and f ′(x) = g(x). Otherwise said, the derivative of the
limit equals the limit of the derivatives.
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Further reading

♣ “Introduction to Metric and Topological Spaces,” by W. A. Sutherland is a nice
introduction to topology. It is the standard book recently for Math 445, “Introduction
to Topology”. This makes a nice starting point for reading more about topology.

♦ “Topology - a first course” by James R. Munkres is more advanced, and covers
much more territory than the Sutherland book. This book covers all the background
material, and then some, usually assumed about topology in graduate school. This
book contains the proof given in the sections on category of these notes.

♥ “Topology” by James Dugundji was the authoritative text for many years. It can
be impenetrable at times, but pursues topics fearlessly - especially in the exercises.
Read this book if you like reading Nietzche.

♠ “Topology” by John Hocking and Gail Young is the source book on topology for the
1960’s generation - which included Dugundji. It includes many celebrated examples
of pathological spaces, including the “Alexander’s Horned Sphere” and lots of others,
like space filling curves and such.


