Math 414 Analysis II

Problem Set 11

Due Friday April 16

1) Prove that the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges uniformly to e^x on every closed interval [-M, M].

2) a) Calculate $\sum_{n=1}^{\infty} \frac{n}{2^n}$. [Hint: Consider the power series $f(x)=\sum x^n$ and f'(x).]

b) Calculate $\sum_{n=0}^{\infty} \frac{2n+1}{2^n n!}.$

3) Suppose $\alpha \in \mathbb{R}$ We define $\binom{\alpha}{0} = 1$ and

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$

for n = 1, 2,

For example

$$\binom{\frac{1}{2}}{3} = \frac{\frac{1}{2} \cdot \frac{-1}{2} \cdot \frac{-3}{2}}{3!} = \frac{1}{16}.$$

Let $f(x) = (1 + x)^{\alpha}$.

a) Prove that

$$\sum_{n=0}^{\infty} \binom{\alpha}{n} x^n$$

is the Taylor series for f centered at 0.

- b) Prove that this series coverges if |x| < 1.
- c) Prove that the series converges uniformly to $(1+x)^{\alpha}$ for $x \in [0,M]$ for $0 \le M < 1$. Notice that if $t \ge 0$ then $(1+t)^{\alpha-n-1} \le 1$ for large enough n.
 - d) Find the Taylor series for

$$g(x) = \frac{1}{\sqrt{1-x^2}}$$
 and $h(x) = \arcsin(x)$

and argue that these series converge to the desired functions on (-1,1).[Hint: Use the fact that we know the Taylor series for $(1+x)^{1/2}$ on (-1,1).

4) By considering Taylor series decide which of the following function is largest, and which is smallest, for x > 0 near 0.

$$f(x) = 1 + \sin x$$
, $g(x) = e^x$, or $h(x) = \frac{1}{\sqrt{1 - 2x}}$.

¹Bonus Problem: Prove that the series converges uniformly to $(1+x)^{\alpha}$ on [-c,c] for 0 < c < 1.