Math 414 Analysis II

Problem Set 5

Due Friday February 20

- 1) Suppose $A \subseteq \mathbb{R}$ has measure zero.
- a) Let $B = \{x \in [0,1] : x \notin A\}$. Prove that B is dense and does not have measure zero.
- b) Fix $r \in \mathbb{R}$ and let $A + r = \{x + r : x \in A\}$. Prove that A + r has measure zero.
- c) Prove or Disprove. Let C be the Cantor set. If $x \in [0,1]$ there is $y \in C$ and $z \in \mathbb{Q}$ such that x = y + z. [Hint: use b)]
- 2) Suppose $f:[a,b]\to\mathbb{R}$ is integrable, $f(x)\geq 0$ for all x and $\int_a^b f=0$. Prove that $\{x:f(x)\neq 0\}$ has measure zero.
- 3) Suppose $f:[a,b]\to\mathbb{R}$. For $n\in\mathbb{N}$ let $h=\frac{b-a}{n}$, let $x_i=a+ih$ for $i=0,\ldots,n$ and let

$$s_n = \sum_{i=1}^n f(x_{i-1})h.$$

- a) Prove, using results from class, that if f is integrable then $\lim s_n = \int_a^b f$.
- b) Give an example of a nonintegrable function f where $\lim s_n$ exists.¹

 $^{^{1}}$ This example shows why we don't only use partitions where every interval has the same length.