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Integrable Functions with Many Discontinuities

We give several examples of integrable functions with many discontinuities.
We showed for homework that every nondecreasing function f : [a, b] →

R is integrable. It is not hard to construct a nondecreasing function with
countably many discontinuities. For example, let f : [0, 1] → R be the
function

f(x) =

{
1 if x = 1
1− 1

n
if 1− 1

n
≤ x < 1− 1

n+1

.
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Then f is nondecreasing and hence integrable. Clearly f is discontinuous
at 1− 1

n
for all n ∈ N.

Next consider the Thomae function t : [0, 1]→ R

t(x) =





1 if x = 0
0 x 6∈ Q
1
n
if x = m

n
∈ Q where m 6= 0 and n are relatively prime

.

We have shown that t is continuous at every irrational number but discon-
tinuous at every rational number.

Proposition 1 The Thomae function is integrable and
∫ 1

0
t = 0.

Proof The irrational numbers are dense. Thus for any partition P =
{x0 . . . , xn} there is always an irrational in every interval [xi−1, xi]. Thus
L(t, P ) = 0. To prove that t is integrable it is enough to show that for every
ε > 0 there is a partition Pε with U(t, P ) < ε.
Let An = {x : t(x) ≥

1
n
}. If x ∈ An, then x = i/j where i, j ≤ n. In

particular An is finite.
Suppose ε > 0. Choose n such that 1

n
< ε

2
. We will choose a partition Pε

such that each point of An is in an interval [xi−1, xi] where

∆xi = xi − xi−1 <
ε

2|An|
.

Let B = {i : An ∩ [xi−1, xi] = ∅}. Note that |B| ≤ |An|. If i ∈ Bi then
Mi <

1
n

< ε
2
, while if i 6∈ Bi, then Mi = 1. Thus

U(t, Pε) =
∑

i∈B

Mi∆xi +
∑

i6∈B

Mi∆xi

<
∑

i∈B

ε

2
∆xi +

∑

i6∈B

∆xi

<
ε

2
+ |An|

ε

2|An|
< ε.

Since U(t, Pε)− L(t, Pε) < ε, t is integrable. Since

0 = L(t, Pε) ≤

∫ 1

0

t ≤ U(t, Pε) < ε
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for all ε,
∫ 1

0
t = 0.

The Thomae function has countably many discontinuities. We next give
an example of an integrable function with uncountably many discontinuities.
Let C be the Cantor set and let f : [0, 1]→ R. Be the function

f(x) =

{
1 if x ∈ C
0 if x 6∈ C

.

Proposition 2 f is integrable and
∫ 1

0
f = 0.

Recall the construction of the Cantor set from Quick Tour of the Topology

of R §11 or section 3.1 of Abbott. We build a sequence of closed sets C0 ⊃
C1 ⊃ C2 ⊃ . . . as follows:

C0 = [0, 1],

we throw out the middle third and are left with

C1 = [0,
1

3
] ∪ [

2

3
, 1],

we throw out the middle third of each interval and get

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1] . . .

In general Cn is a union of 2
n closed intervals of length 1

3n .
The Cantor set C =

⋃∞
n=0 Cn is an uncountable, closed, nowhere dense

set.
Let fn : [0, 1]→ R be the function

fn(x) =

{
1 if x ∈ Cn

0 if x 6∈ Cn
.

Note that f(x) ≤ fn(x) for all x ∈ [0, 1]. The function fn is easy to integrate.
fn(x) = 1 on 2

n intervals of length 1
3n and is 0 everywhere else. Thus

∫ 1

0

fn =

(
2

3

)n

.

Suppose ε > 0. Choose n such that (2/3)n < ε
2
and choose a partition P

such that U(fn, P ) − L(fn, P ) < ε
2
. Then U(fn, P ) < ε. But f(x) ≤ fn(x)

for all x ∈ [0, 1]. Thus

U(f, P ) ≤ U(fn, P ) < ε.
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Clearly L(f, P ) ≥ 0 (indeed since C is nowhere dense L(f, P ) = 0). Thus
U(f, P )− L(f, P ) < ε. Hence f is integrable.
Since for any ε > 0 there is a partition P with U(f, P ) < ε we must have∫ 1

0
f = 0.

Exercise 3 Show that f is continuous at x if and only if x 6∈ C. Thus f
has uncountably many discontinuities.

Approximating Integrable Functions

Lemma 4 Suppose f : [a, b] → R is bounded, P is a partition of [a, b] and
ε > 0. There is a continuous function h : [a, b] → R such that f(x) ≤ h(x)
for all x ∈ [a, b] and ∫ b

a

h− U(f, P ) < ε.

Proof We begin by finding a step function ĥ such that f(x) ≤ ĥ(x) for all

x ∈ [a, b] and
∫ b
a
ĥ(x) = U(f, P ). Suppose P = {x0, . . . , xn}.

Let Mi = sup{f(x) : x ∈ [xi−1, xi]} and let

ĥ(x) =

{
Mi if xi−1 < x < xi
Mn if x = b

.

Then f(x) ≤ ĥ(x) for all x ∈ [a, b] and

∫ b

a

ĥ =

n∑

i=1

Mi∆xi = U(f, P ).

We next find a continuous function h ≥ ĥ with
∫ b
a
(h − ĥ) < ε. We

do this by modifying ĥ near the points x1, . . . , xn−1 where there may be a
discontinuity.
The idea of the proof is easy but the notation can get messy. Rather than

giving a detailed proof we give an example.
Suppose P = {a, x1, x2, b} and

ĥ(x) =

{ c1 a ≤ x < x1

c2 x1 ≤ x < x2

c3 x2 ≤ x ≤ b

where c1 < c2 and c2 > c3.
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c1

c2

c3

c

c

s

s

s

a x1 x2 b

We want a continuous function h ≥ ĥ that looks like this:

c1

c2

c3

a x1 x2 bu v

¤
¤
¤
¤¤ A

AA

We will choose u and v so that
∫ b
a
(h− ĥ) < ε. We do this by making sure

both of the triangles have area less than ε
2
.

Suppose x1 − u < ε
c2−c1

and v − x2 < ε
c2−c3

. Then each triangle has area

less than ε
2
and

∫ b
a
(h− ĥ) < ε.

In this case

h(x) =





c1 a ≤ x ≤ u
c1 +

c2−c1
x1−u

(x− u) u < x < x1

c2 x1 ≤ x ≤ x2

c2 +
c3−c2
v−x2

(v − x) x2 < x ≤ v
c3 v < x ≤ b

.

It is clear that h(x) ≥ ĥ(x) for all x ∈ [a, b] and
∫ b
a
(h − ĥ) < ε. Thus

h(x) ≥ f(x) for all x ∈ [a, b] and
∫ b
a
h− U(f, P ) < ε.
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Similarly we can find a continuous g ≤ f such that L(f, P )−
∫ b
a
g < ε.

Corollary 5 If f : [a, b] → R is Riemann–integrable, then for any ε > 0
there are continuous functions g, h : [a, b]→ R such that g(x) ≤ f(x) ≤ h(x)

for all x ∈ [a, b] and
∫ b
a
(h− g) < ε.

Proof Since f is integrable we can find a partition P such that

U(f, P )− L(f, P ) <
ε

3
.

By the Lemma we can find continuous functions g and h such that g(x) ≤
f(x) ≤ h(x) for all x ∈ [a, b],

∫ b

a

h− U(f, P ) <
ε

3
and L(f, P )−

∫ b

a

g <
ε

3
.

Then
∫ b
a
h− g < ε.

Another Characteriztation of Integrable Functions

We prove Theorem 8.1.2 from Abbott’s Understanding Analysis

Theorem 6 A bounded function f : [a, b]→ R is Riemann-integrable with

∫ b

a

f = A

if and only if for every ε > 0, there is a δ > 0 such that

|R(f, P )− A| < ε

for any δ-fine tagged partition P .

Proof
(⇒) We first prove this in case f is continuous. We begin as in the proof
that continuous functions are integrable.
Let ε > 0. By Uniform Continuity there is δ > 0 such that if x, y ∈ [a, b]

and |x− y| < δ, then

|f(x)− f(y)| <
ε

b− a
.
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Choose a partition P = {x0, . . . , xn} and tags z1, . . . , zn such that

∆xi = xi − xi−1 < δ

for i = 1, . . . , n. Since f is continuous there are u, v ∈ [xi−1, xi] with f(u) =
mi and f(v) =Mi. By choice of δ, |Mi −mi| <

ε
b−a
. Thus

U(f, P )− L(f, P ) =
n∑

i=1

(Mi −mi)∆xi <
ε

b− a

n∑

i=1

∆xi = ε.

But
L(f, P ) ≤ R(f, P ) ≤ U(f, P )

and

L(f, P ) ≤

∫ b

a

f ≤ U(f, P ).

Thus ∣∣∣∣R(f, P )−
∫ b

a

f

∣∣∣∣ < ε.

We now consider the general case where f may not be continuous. Let
ε > 0. We know that there are continuous functions g, h : [a, b] → R such
that g(x) ≤ f(x) ≤ h(x) for all x ∈ [a, b] and

∣∣∣∣
∫ b

a

h−

∫ b

a

g

∣∣∣∣ <
ε

2
.

By the argument above we can find δ > 0 such that for any tagged δ-fine
partition P

∣∣∣∣R(h, P )−
∫ b

a

h

∣∣∣∣ <
ε

2
and

∣∣∣∣R(g, P )−
∫ b

a

g

∣∣∣∣ <
ε

2
.

Since
R(g, P ) ≤ R(f, P ) ≤ R(h, P )

and ∫ b

a

g ≤

∫ b

a

f ≤

∫ b

a

h,

R(g, P )−

∫ b

a

h ≤ R(f, P )−

∫ b

a

f ≤ R(h, P )−

∫ b

a

g
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and
∣∣∣∣R(f, P )−

∫ b

a

f

∣∣∣∣ ≤ max
(∣∣∣∣R(g, P )−

∫ b

a

h

∣∣∣∣ ,
∣∣∣∣R(h, P )−

∫ b

a

g

∣∣∣∣
)

.

But
∣∣∣∣R(g, P )−

∫ b

a

h

∣∣∣∣ ≤
∣∣∣∣R(g, P )−

∫ b

a

g

∣∣∣∣+
∣∣∣∣
∫ b

a

h−

∫ b

a

g

∣∣∣∣ ≤
ε

2
+

ε

2
= ε

and
∣∣∣∣R(h, P )−

∫ b

a

g

∣∣∣∣ ≤
∣∣∣∣R(h, P )−

∫ b

a

h

∣∣∣∣+
∣∣∣∣
∫ b

a

h−

∫ b

a

g

∣∣∣∣ ≤
ε

2
+

ε

2
= ε.

Thus ∣∣∣∣R(g, P )−
∫ b

a

h

∣∣∣∣ ≤ ε

as desired.

(⇐) We first need one claim.

Claim For any bounded function f : [a, b] → R, any partition P and any
ε > 0 we can find a tagging such that

U(f, P )− R(f, P ) < ε.

Note: if f is continous we can do better, we could choose zi ∈ [xi−1, xi]
such that zi = Mi and then R(f, P ) = U(f, P ). If f is not continuous, it is
possible that there is no zi ∈ [xi−1, xi] with f(zi) = Mi. Even if this is not
possible, we can find zi ∈ [xi−1, xi] with f(zi) as close as we’d like to Mi.
For i = 1, . . . , n choose zi ∈ [xi−1, xi] with

Mi − f(zi) <
ε

n(xi − xi−1)
.

Then

U(f, P )−R(f, P ) =
n∑

i=1

(Mi − f(zi))∆xi

<
n∑

i=1

ε

n(xi − xi−1)
∆xi

=

n∑

i=1

ε

n
= ε.
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as desired. This proves the claim.

We can now finish the proof. We want to show that f is integrable and∫ b
a
f = A.
Let ε > 0. There is δ > 0 such that

|R(f, P )− A| <
ε

4

for any tagged δ-fine partition P .
By the claim we can find a tagging P1 of P such that

U(f, P )− R(f, P1) <
ε

4
.

Similarly, we can find a tagging P2 of P such that

R(f, P2)− L(f, P ) <
ε

4
.

Note that

|R(f, P1)− R(f, P2)| ≤ |R(f, P1)− A|+ |R(f, R2)− A| <
ε

2

and

U(f, P )−L(f, P ) ≤ U(f, P )−R(f, P1)+R(f, P2)−L(f, P )+|R(f, P1)−R(f, P2)| < ε.

Thus f is integrable.
These arguments also show that for any ε > 0 we can find a partiion P

with
|U(f, P )− A| < ε.

Thus
∫ b
a
f = A.
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Lebesgue’s Characterization of Riemmann Integrable
Functions

Measure Zero Sets

Read
• Abbott §7.6 pg 203–207
• Chapter 2 §1 & 2 of Quick Tour of the Topology of R on measure zero

sets.

Sets of Discontinuity

In Math 413 we proved that for any f : R → R the set of points where f is
discontinuous is an Fσ-set. Let’s review the key steps of that proof.

Definition 7 For f : [a, b]→ R let

D = {x ∈ [a, b] : f is discontinuous at x}.

If ε > 0, let

Dε = {x : for all δ > 0 there are y, z ∈ (x−δ, x+δ) with |f(y)−f(z)| ≥ ε}.

Lemma 8 D =
∞⋃

n=1

D 1

n

.

Proof Suppose x ∈ D. Then there is ε > 0 such that for any δ > 0 there
is a y such that |x − y| < δ and |f(x) − f(y)| ≥ ε. If 1

n
< ε, then x ∈ D 1

n

.

Thus D ⊆
⋃∞

n=1 D 1

n

.
On the other hand, suppose x ∈ D 1

m

. For all n choose

yn, zn ∈ (x−
1

n
, x+

1

n
)

such that |f(yn) − f(zn)| ≥
1
m
. Note that lim yn = lim zn = x. If f were

continuous at x, then lim f(yn) = lim f(zn) = x and there would be an N
such that |f(yn) − f(xn)| < 1

m
for all n > N , a contradiction. Thus each

D 1

m

⊆ D and

D =
∞⋃

n=1

D 1

n

.

10



Lemma 9 Each Dε is closed.

Proof Suppose x 6∈ Dε. Then there is δ > 0 such that |f(y)− f(z)| < ε for
all y, z ∈ (x− δ, x+ δ). It is easy to see that if y ∈ (x− δ, x+ δ) then y 6∈ Dε.
Thus Dc

ε is open and Dε is closed.

Corollary 10 D is an Fσ-set.

Theorem 11 (Lebesgue’s Theorem) Suppose f : [a, b] → R is bounded.

Then f is Riemann-integrable if and only if D has measure zero.

Proof
(⇒) Suppose f is integrable. To prove that D has measure zero it suffices

to prove that each D 1

m

has measure zero.

Let P = {x0, . . . , xn} be a partition such that U(f, P ) − L(f, P ) < ε
2m
.

Let Oi be the interval (xi −
ε

4(n+2)
, xi +

ε
4(n+2)

). Then |Oi| =
ε

2(n+1)
.

Let B = {i : (xi−1, xi) ∩ D 1

m

6= ∅}. If i ∈ B there are x, y ∈ (xi−1, xi)

with |f(x)− f(y)| ≥ 1
m
. Thus Mi −mi ≥

1
m
. Thus

∑

i∈B

1

m
∆xi ≤ U(f, P )− L(f, P ) <

ε

2m

and
∑

i∈B∆xi < ε
2
. If x ∈ D 1

m

, then either x ∈ (xi−1, xi) for some i ∈ B, or
x = xi for some i = 0, . . . , n. Thus

D 1

m

⊆ O0 ∪ . . . ∪On ∪
⋃

i∈B

(xi−1, xi)

and
|O0|+ · · ·+ |On|+

∑

i∈B

∆xi < (n+ 1)
ε

2(n+ 1)
+

ε

2
= ε.

Thus D 1

m

has measure zero and D has measure zero.

(⇐) Suppose D has measure zero. Suppose |f(x)| < M for all x ∈ [a, b].
Let ε > 0. Choose n such that b−a

n
< ε

2
. The set D 1

n

⊆ D has measure
zero. Thus we can find a countable collection of open intervals O1, O2, . . .
such that

D 1

n

⊆
∞⋃

j=1

Oj and

∞∑

j=1

|Oj| <
ε

4M
.
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Since D 1

n

is a closed subset of [a, b] it is compact. Thus, by the Heine–Borel
Theorem, we can find j1, . . . , jm such that

D 1

n

⊆ Oj1 ∪ . . . ∪Ojm.

Let O = Oj1 ∪ . . .∪Ojm. If x ∈ [a, b]\O, then x 6∈ D 1

n

. Thus there is an open

interval Ix with x ∈ Ix such that |f(y) − f(z)| < 1
n
for all y, z ∈ Ix. Note

that
[a, b] ⊆ Oj1 ∪ . . . ∪

⋃

x6∈O

Ix.

By one more application of compactness, we can find x1, . . . , xk such that

[a, b] ⊆ Oj1 ∪ . . . ∪Ojm ∪ Ix1
∪ . . . ∪ Ixk

.

We choose a partition P that contains all of the endpoints ofOj1, . . . , Ojm, Ix1
, . . . , Ixk

.
Each interval [xi−1, xi] is either contained in O or |f(z) − f(y)| < 1

n
for all

y, z ∈ [[xi−1, xi]. In the later case Mi−mi ≤
1
n
. Let B = {i : [xi−1, xi] ⊆ O}.

Then

U(f, P )− L(f, P ) =
∑

i∈B

(Mi −mi)∆xi +
∑

i6∈B

(Mi −mi)∆xi

≤
∑

i∈B

2M∆xi +
∑

i6∈B

1

n
∆xi

≤ 2M(|Oj1 + . . .+Ojm|) +
1

n
(b− a)

< 2M
ε

4M
+

ε

2
< ε.

Thus f is integrable.
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