
The Weierstass Function

Spring 2004

In thesse notes we will fill in the details of the proof of the existence of a
continuous g : R → R that is nowhere differentiable.

Let h : R → R be the function h(x) = |y| where −1 < y ≤ 1 and
x = 2n + y for some n ∈ Z. In other words, h is a periodic function with
period 2 that agrees with absolute value on [−1, 1]. For n = 0, 1, 2, . . . let

hn(x) =
1

2n
h(2nx).

Then hn is a function with period 2n−1. The function hn is nondifferentiable
at points of the form p/2n where p ∈ Z, but is differentiable at all other
points. Indeed hn is linear on each inteval [p/2n, p+ 1/2n].

For m = 0, 1, . . . let

gm(x) = h0(x) + h1(x) + . . .+ hm(x) and g(x) =
∞
∑

i=0

hi(x)

Lemma 1 i) The series
∑∞

i=0 hi(x) converges for all x ∈ R. Thus g is a
well defined functions.

ii) The sequence of functions (gm) converges uniformly to g.

Proof i) Since |h(x)| ≤ 1, |hi(x)| ≤
1
2i for all x. Thus

∑

hi(x) coverges for
all x ∈ R.

ii) For any x,

|g(x)− gn(x)| ≤

∞
∑

i=n+1

1

2i
=

1

2n
.

Given ε > 0, choose N such that ε > 1
2N . If n ≥ N , then |g(x)− gn(x)| < ε

for all x ∈ R. Thus (gn)→ g uniformly.
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Corollary 2 The function g is continuous.

Proof Since each hi is continuous, each gm is continuous. Since (gm) → g
uniformly, g is continuous.

The proof that g is nowhere differentiable breaks into two cases.

Definition 3 We say that x ∈ R is a dyadic rational if x = p/2n for some
p ∈ Z and n = 0, 1, 2, . . ..

Lemma 4 If x ∈ R is a dyadic rational, then g is not differentiable at x.

Proof Let x = p

2l and let xn = x + 1
2n for n ∈ N. Suppose n > l. Then

g(xn) =

∞
∑

i=0

1

2i
h

(

2i

(

p

2l
+

1

2n

))

=

l
∑

i=0

1

2i
h

(

p

2l−i
+

1

2n−i

)

+

n
∑

i=l+1

1

2i
h(2i−n)

=
l
∑

i=0

1

2i

(

h(p/2l−i) + δi

)

+
n− l

2n

where δi = h(p/2l−i + 1
2n−i )− h(p/2l−i). Looking at the definition of h, it is

easy to see that |h(x+ ε)− h(x)| ≤ ε for all x ∈ R. Thus

g(xn) =

l
∑

i=0

1

2i
h(p/2l−i) +

n
∑

i=1

1

2i
δi +

n− l

2n

= g(x) +
n− l

2n
+ δ

where

|δ| ≤

n
∑

i=1

1

2i
|δi| ≤

l + 1

2n
.

Thus

n− 2l − 1 ≤
g(xn)− x

xn − x
≤ n+ 1.

Thus

lim
n→∞

g(xn)− x

xn − x
=∞

and g is not differentiable at x.
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Lemma 5 Suppose x is not a dyadic rational. Each gm is differentiable at
x and |g′m+1(x)− g′m(x)| = 1.

Proof Each hi is differentiable at x. Thus each gm is differentiable at x.
Note that

|g′m+1(x)− g′m(x)| = |h
′
m+1(x)|

but h′i(x) =
1
2i h

′(2i(x))(2i) = h′(2ix). But h′(x) = ±1 for all x 6∈ Z. Thus
|g′m+1(x)− g′m(x)|.

Lemma 6 If x ∈ R is not a dyadic rational, then g is not differentiable at
x.

Proof For each m we can find a p ∈ Z such that

p

2m
< x <

p+ 1

2m
.

Let xm = p/2m and ym = p+1
2m . Then (xm) and (ym) both converge to x.

Consider the function gm. We know this function is linear on the interval
[xm, ym]. We also know that g(xm) = gm(xm) and g(ym) = gm(ym). On the
other hand, since x is not a dyadic rational, we know that g(x) > gm(x). It
follows that

g(ym)− g(x)

ym − x
<

gm(ym)− gm(x)

ym − y
= g′m(x) =

gm(x)− gm(xm)

x− xm

<
g(x)− g(xm)

x− xm

.

Suppose g is differentiable at x. Then for any ε > 0 we can find N ∈ N
such that if m ≥ N , then g′(x) is within ε/2 of g(x)−g(xm)

x−xm
and g(ym)−g(x)

ym−x

for all m ≥ N . But from the inequalities above it would follow that g′N(x)
and g′N+1(x) are within ε/2 of g′(x) and hence within ε of each other. This
contradicts Lemma5. Thus g is not differentiable at x.

We have now proved the following result.

Theorem 7 (Weierstrass) There is a continuous function g : R → R that
is nowhere differentiable.
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