Rabin-Miller Primality Test

Lemma 0.1 Suppose p is an odd prime. Let $p - 1 = 2^k m$ where m is odd. Let $1 \leq a < p$. Either

i) $a^m \equiv 1 \pmod{p}$ or

ii) one of $a, a^2, a^4, a^8, \ldots, a^{2^{k-1}}m$ is congruent to $-1 \pmod{p}$.

Proof We know that

$$\left(a^{2^{k-1}m}\right)^2 = a^{p-1} \equiv 1 \pmod{n}.$$

Thus $a^{2^{k-1}m} \equiv \pm 1 \pmod{p}$. If $a^{2^{k-1}m} \equiv -1 \pmod{p}$ we are done. Otherwise we proceed by induction.

If each of $a^{2^{i+1}m}, \ldots, a^{2^{k-1}m}$ is congruent to 1, then $a^{2^i}m \equiv \pm 1$. It follows that if ii) fails, we must have $a^m \equiv 1 \pmod{p}$.

Suppose we are given an odd number n and want to know if it prime. We could pick $1 \leq a < n$ and calculate

$a, a^2, a^4, a^8, \ldots, a^{2^{k-1}}m \pmod{n}$. If neither i) nor ii) holds then we would know n is composite. In this case we say a is a witness that n is composite.

If a is not a witness, this does not tell us that n is prime, but it gives us some evidence that n might be prime.

If n is composite, most $1 < a < n$ will witness that it is composite.

Theorem 0.2 If n is composite, then at least 75% of numbers $1 < a < n$ witness that n is composite.

This gives rise to a probabilistic algorithm for testing primality.

Rabin-Miller Algorithm

- Randomly pick a_1, \ldots, a_k independent elements $1 < a < n$.
- For each a_i do the test described above.
• If any \(a_i \) is a witness that \(n \) is composite, you know \(n \) is composite
• If no \(a_i \) is a witness, guess that \(n \) is prime.

If you decide that \(n \) is composite, you will know that this is the correct answer. If you guess that \(n \) is prime, there is some chance that you were just unlucky. But if you guess that \(n \) is prime, the chance that you are wrong is less that \((.25)^k \). If we took \(k = 100 \), then \((.25)^{100} < 10^{-60} \). Taking \(k \) larger will increase our level of certainty further.

Fermat Test–A Flawed Attempt

One might try a simpler version of the Rabin-Miller test. If we want to know if \(n \) is prime, pick \(1 < a_1, \ldots, a_k < n \) and test if \(a_i^n \equiv a_i \pmod{n} \). If this fails for any \(i \), then we know \(n \) is composite, while if it is always true we might guess \(n \) is prime. For most numbers \(n \) we are very likely to get the right answer, but there are some composite numbers that would always pass this test.

Definition 0.3 We say \(n \) is a *Carmichael number* if \(a^n \equiv a \pmod{n} \) for all \(n \).

\[561 = (3)(11)(17). \] But for any \(a \),
\[a^{561} = (a^2)^{280}(a) \equiv a \pmod{3} \]
\[a^{561} = (a^{10})^{56}(a) \equiv a \pmod{11} \]
\[a^{561} = (a^{16})^{35}(a) \equiv a \pmod{17}. \]

Thus \(a^{561} \equiv a \pmod{561} \). Thus 561 is a Carmichael number.

There are infinitely many Carmichael numbers.