
§9. Gödel’s Incompleteness Theorem I: Represening Primitive Recursive

Functions

The following three problems can be considered the basic problems in the foundations
of mathematics.

1) Every mathematical truth about the natural numbers should have a meaningful finitistic
proof. While it is arguable what a “finitistic proof” is, one precise way of saying this is
that there is a natural set of axioms from which we can derive all truths about the natural
numbers. For example Peano Arithmetic would be a good candidate.

2) Hilbert’s Conservation Program: If a mathematical truth can be proved by strong
methods (say using set theoretic methods), then it can be proved by finitistic methods.

3) Hilbert’s Consistency Program: We should be able to give a finitistic proof of the
consistency of our methods.

Gödel showed that all of this is impossible.

Theorem 9.1. i) (First Incompleteness Theorem) There is a sentence φ such that N |= φ

and PA 6` φ. Indeed if T is a recursive theory such that T ⊇ PA and N |= T , then there
is a sentence φ such that T 6` φ and T 6` ¬φ.

ii) (Second Incompleteness Theorem) Let T be as above. Then T does not prove the
consistency of T .

The first completeness theorem shows that i) will fail. The second incompleteness
theorem shows that iii) fails. Since using set theory we can show that PA is consistent,
iii) shows that the conservation program fails as well.

We begin by outlining the main steps of Gödel’s proof. Let L be a recursive language
conaining +, ·, <, 0, 1 the language of arithmetic and let T be an L-theory. T will be our
candidate for an axiomatization of a large part of mathematics. We assume T is sufficiently
strong by requiring that T contains T0, where T0 is a theory which axiomatizes enough
number theory for our purposes and N |= T0. We will take T0 = PA, though a much
weaker theory would suffice. For T we can take PA, the Zermelo-Frankel axioms for set
theory, or some other strong system.

The following lemma is the key technical idea. For n ∈ N, let n̂ denote the L-term
1 + . . .+ 1︸ ︷︷ ︸
n−times

. If m1, . . . ,mn ∈ N, we let ̂̄m denote (m̂1, . . . , m̂n).

Lemma 9.2: (Representation Lemma) We will show that if f(x̄) is a primitive recusive
function, then there is a formula φf (x̄, y) such that

i) f(n̄) = m⇔ T0 ` φf (̂̄n, m̂)⇔ N |= φf (̂̄n, m̂).

ii) T0 ` ∀x̄∃y φf (x̄, y),and

iii) T0 ` ∀x∀y∀z ((φf (x̄, y) ∧ φf (x̄, z))→ y = z).

1

Lemma 9.2 and the results of §7 already allow us to deduce the impossibility of i).
Suppose R ⊆ Nm is recursive. Suppose R =We. Then

x̄ ∈ R⇔ ∃s T (e, x̄, s)

where T Kleene’s T-predicate.
Suppose A ⊆ N is Σn. Say

x ∈ A⇔ ∃y1∀y2 . . .Qyn R(x, ȳ)

where R is recursive and Q is ∃ if n is odd and ∀ if n is even.
Suppose without loss of generality that n is odd. Then

x ∈ A⇔ ∃y1∀y2 . . .Qyn∃s T (e, x, ȳ, s)

Let ψA(v) be the formula

∃y1∀y2 . . .Qyn∃s φT (ê, v, ȳ, s)

where φT is the formula which represents T .
It is clear that

n ∈ A⇔ N |= ψA(n̂)

Let Th(N) = {ψ : N |= ψ}. The function

n 7→ ψA(n̂)

gives a many-one reduction of A to Th(N). Thus we have proved:

Lemma 9.3. Th(N) is not arithmetic.

Proof.
Suppose Th(N) were Σn. By 7.15, there is a Σn+1 set A which is not Σn. By the above

arguments A ≤m Th(N). But by 7.11 vi), if Th(N) ∈ Σn, then A ∈ Σn, a contradiction.

In particular we can now deduce the first incompleteness theorem.

Corollary 9.4: If N |= T and T is recursive, then there is a sentence φ such that N |= φ

and T 6` φ.

proof:
If T is recursive, then {φ : T ` φ} is a recursively enumerable subset of Th(N). Since

Th(N) is not recursively enumerable, there is a setence φ such that N |= φ but T 6` φ.

Indeed, if T ⊆ Th(N) is Σn, then {φ : T ` φ} is Σn+1 and the above argument shows
that there is a true sentence φ such that T 6` φ.

2

Our first task then is to prove the representation lemma. This will require yet another
method of coding finite sequences. The goal is to have a method of coding finite sequences
so that one can express properties of the codes easily in the language of arithmetic. We
will use Gödel’s beta-function.

Let Seq be the set of finite sequences of elements of N. We define β : N3 → Seq,
such that β(u, v, w) is the sequence (a0, . . . , aw−1) where ai = u(mod (i + 1)v + 1) for
i = 0, . . . , w − 1 (and β(u, v, w) is the empty sequence for w = 0).

Let Ψ(u, v, w, i, x) be the formula

i < w ∧ 0 ≤ x < (i+ 1)v + 1 ∧ ∃y ≤ u y((i+ 1)v + 1) + x = u.

Then Ψ(u, v, w, i, x) expresses that x is the ith element in the sequence β(u, v, w). We will
write

β(u, v, w)i = x

for Ψ(u, v, w, i, x). While it is easy to express that β(u, v, w)i = x, it is not so easy to see
that every sequence is coded in this way.

The proof uses the following simple lemma from number theory.

Lemma 9.5. (Chineese Remainder Theorem) Suppose m1, . . . ,mn are relatively prime.
Then for any a1, . . . , an there is an x such that x ≡ ai(mod mi) for i = 1, . . . , n.

Proof.
Let

Mi =
∏

j 6=i

mj .

Since Mi and mi are relatively prime, we can find bi such that biMi ≡ 1(mod mi). Let

x =

n∑

i=1

aibiMi.

Since mi|Mj for j 6= i, x ≡ aibiMi(mod mi). Thus x ≡ ai(mod mi) for i = 1, . . . , n.

Lemma 9.6. For any sequence σ = (a0, . . . , aw−1) there are u and v such that β(u, v, w) =
σ.

Proof.

Let n = max(w, a0, . . . , aw−1) and let v = n!. We claim that v + 1, 2v+ 1, . . . , wv+ 1
are relatively prime. Suppose p is prime and p|iv + 1 and p|jv + 1 where j > i > 0
Then p|(j − i)v Thus p|(j − i) or p|v and, since (j − i)|v, p|v. But then p 6 |iv + 1. Thus
v + 1, . . . , wv + 1 are relatively prime.

By the Chinese remainder theorem there is a number u such that u ≡ ai(mod (i +
1)v + 1) for i = 0, . . . , w − 1.

3

The proof above is a very simple number theoretic argument that can easily be formal-
ized in Peano Arithmetic (in particular the usal proof of the Chineese remainder theorem
can be formalized in PA. Thus for any w

PA ` ∀a0 . . .∀aw−1∃u∃v∀i < w

w−1∧

i=0

β(u, v, w)i = ai.

We will use PA as the weak base theory T0. If we wanted to use a weaker base theory
we would need to use a more subtle coding.

We can now prove the Representation Lemma. If f : Nm → N is a primitive recursive
function we say that φ(x1, . . . , xm, y) represents f in PA if and only if

i) f(m̄) = n if and only if PA ` φ(̂̄m,n) if and only if N |= φ(̂̄m,n) for m̄, n ∈ N.
ii) PA ` ∀x̄∃y φ(x̄, y), and
iii) PA ` ∀x̄∀y∀z ((φ(x̄, y) ∧ φ(x̄, z))→ y = z).

Conditions ii) and iii) assert that in any model of PA the formula φ defines the graph
of a function. Condition i) asserts that on the standard part of the model that function
agrees with f .

We will prove that any primitive recursive function is represented in PA. This will
be done by induction on the complexity of the definition of f . We begin with the basic
functions.

• If z is the zero function, let φz(x, y) be the formula

• If s is the succesor function, let φs(x, y) be the formula y = x+ 1.

• If πni is the function (x1, . . . , xn) 7→ xi, then φπn

i
(x1, . . . , xn, y) is the formula y = xi.

It should be clear if f is a basic function then φf represents φ.

• Suppose g1, . . . , gn : Nm → N and h : Nn → N are primitive recursive and
f : Nm → N by f(x̄) = h(g1(x̄), . . . , gn(x̄)). Suppose by induction that there are formulas
φg1 , . . . , φgn

, φh representing g1, . . . , gn, and h respectively. Let φf (x̄, y) be the formula

∃z1 . . .∃zn

n∧

i=1

φgi
(x̄, zi) ∧ φh(z1, . . . , zn, y).

Suppose a1, . . . , am ∈ N and h(ā) = b. There are c1, . . . , cn ∈ N such that gi(ā) = ci
for i = 1, . . . , n and h(c̄) = b. Then

PA `
n∧

i=1

φgi
(̂̄a, ĉi) ∧ φh(̂c̄, b̂)

so PA ` φf (̂̄a, b̂). On the other hand suppose a1, . . . , am, b ∈ N and PA ` φf (̂̄a, b̂). Then
N |= φf (̂̄a, b̂). Thus there are c1, . . . , cn ∈ N such that

N |= φgi
(̂̄a, ĉi) ∧ φh(̂c̄, b̂).

4

Since PA proves that φgi
and φh define graphs of functions which agree on Nm and Nn

with gi and h respectively, gi(ā) = ci and h(c̄) = b thus f(ā) = b.
Since PA proves that φgi

for i = 1, . . . , n and φh define the graphs of a functions, PA
proves that φf defines the graph of a function.

• Suppose g : Nm−1 → N and h : Nm+1 → N are primitive recursive f(0, x̄) = g(x̄)
and f(n+ 1, x̄) = h(n, x̄, f(n, x̄)). Let φg represent g and φh represent h.

Let φf (z, x̄, y) be the formula asserting “there is σ coding a sequence of length z + 1,
say σ = (u0, . . . , uz) where φg(x̄, u0) and φh(i, x̄, ui, ui+1) for i < z + 1 and y = uz”.

To make this precise we use the beta-function. Let φf (z, x̄, y) be the formula

∃u, v [(∀w ≤ uβ(u, v, z + 1)0 = w → φg(x̄, w))∧ (∀i ≤ z∀w1, w2 ≤ u (β(u, v, z+ 1)i = w1∧
β(u, v, z + 1)i+1 = w2)→ φh(i, x̄, w1, w2))].

Using the facts above it is easy to see that φf has the desired interpretation.

Exercise: Show that φf represents f .

This concludes the proof of the Representation Lemma.

We can get a much sharper version of the representation lemma.

Exercise: We say that a formula in the language of arithmetic is a ∆0 formula if it is
in the smallest collection of formulas containing the atomic formulas and closed under
∧,∨,¬ and bounded quantification ∀x < t and ∃x < t where t is a term. For example
∀x < y2∃z < 2xy z = y − x is a ∆0 formula.

We say that ψ(x̄) is a Σ1-formula if it is of the form ∃ȳφ(x̄, ȳ) where φ is ∆0. We say
that a formula θ is ΣPA1 if PA ` θ → ψ for some Σ1-formula Ψ.

i) If φ0 and φ1 are ΣPA1 -formulas show that there φ ∧ ψ and φ ∨ ψ are ΣPA1 .

ii) Suppose φ(x̄, y) is ΣPA1 then so are ∃ȳ φ(x̄, ȳ) and ∀y < t(x̄) φ(x̄, y) for any term t.

iii) Show that any primitive recursive function is represented by a ΣPA1 -formula.

We can say a bit more. Suppose P (x̄) is a primitive recursive predicate. Then there
is a formula ψP (x̄) such that P (n̄) if and only if PA ` ψP (n̄) for all n̄ ∈ N. [Let ΨP (x̄)
be φf (x̄, 1) where f is the primitive recursive characteristic function for P .] The same is
true for any recursively enumberable set.

Corollary 9.7. Let A ⊆ N be recursively enumerable. There is a formula ψA(x) such
that n ∈ A if and only if PA ` ψA(n) for all n ∈ N.

Proof.
Let A =We. Then x ∈ A if and only if ∃s T (e, x, s) where T is Kleene’s T-predicate.

Let ψT (u, v, w) be a formula representing the primitive recursive predicate T . Let ψA(x)
be the formula

∃y ψT (ê, x, y).

If n ∈ A, then there is an s ∈ N such that T (e, n, s). Since ψT represents T , PA `
ψT (ê, n̂, ŝ). But then PA ` ∃y ψT (ê, n̂, y).

5

On the other hand if PA ` ∃y ψT (ê, n̂, y), then N |= ∃y ψT (ê, n̂, y). Choose s ∈ N

such that N |= ψT (ê, n̂, ŝ). But then T (e, n, s) holds and n ∈ A.

We conclude this section with a stronger version of the first incompleteness theorem.
We will replace the assumption that N |= T by the weaker assumption that T ⊇ PA is
consistent.

Let P (T) = {φ : T ` φ} and let R(T) = {φ : T ` ¬φ}. Intuitively P (T) are the
sentences provable from T and R(T) are the sentences refutable from T.

Theorem 9.8. The sets P (PA) and R(PA) are recursively inseparable.

Proof.
Since PA is consistent P (PA) ∩ R(PA) = ∅ and since PA is recursively axiomatized

they are recursively enumerable.
For i = 0, 1 let Ai(e, x, s) be the primitive recursive predicate asserting “the compu-

tation of φe(x) halts in at most s steps with output i”. Let ψi(e, x, s) represent Ai.
Let θ0(x) be the formula

∃y ψ0(x, x, s) ∧ ∀z < y ¬ψ1(x, x, z)

and let θ1(x) be the formula

∃y ψ1(x, x, s) ∧ ∀z ≤ y ¬ψ0(x, x, z)

claim i) PA ` ∀x ¬(φ(x) ∧ ψ(x))
ii) PA ` ∀x [(∃y(ψ0(x, x, y) ∨ ψ1(x, x, y)))→ (θ0(x) ∨ θ1(x))].

For any x, if there is a y such that one of ψ0(x, x, y) or ψ1(x, x, y) holds, then, by induc-
tion, there is y0 such that one of the ψi(x, x, y0) holds and ¬ψ0(x, x, z) and ¬ψ(x, x, z)for
z < y0. If ψ0(x, x, y0) holds, then θ0(x); otherwise θ1(x).

Let A = {e : φe(e) = 0} and B = {e : φe(e) = 1} be the recursively inseparable sets
of 8.4.

Suppose C is a recursive set of sentences such that P (PA) ⊂ C and R(PA) ⊂ C. Let
D = {e : the sentence θ0(ê) ∈ C}. Clearly D is recursive. We claim that D separates A
and B.

Let e ∈ A. Then there is an s ∈ N such that A0(e, e, s). Thus PA ` ψ0(ê, hate, ŝ)
and for all t < s PA ` ¬ψ1(ê, ê, ŝ). Since

PA ` t < ŝ→
s−1∧

i=0

t = î,

PA ` ψ0(ê, ê, ŝ)∧∀z < ŝ ¬φ1(ê, ê, ŝ). Thus PA ` θ0(ê). So θ(ê) ∈ R(PA) ⊆ C and e ∈ D.
Similarly if e ∈ B, then PA ` θ1(ê). Thus PA ` ¬θ0(ê). Thus θ0(ê) ∈ R(PA) ⊆ ¬C

and e ∈ ¬D. Since D separates A and B, D is not recursive, a contradiction.

6

Corollary 9.9. (Rosser’s Incompleteness Theorem) Suppose T ⊇ PA is a consistent
recursively axiomatized theory. Then P (T) and R(T) are recursively inseparable. In
particular T is incomplete.

Proof.
Since T is consistent and recursively axiomatized, P (T) and R(T) are disjoint re-

cursively enumberable sets. Since T ⊇ PA, P (T) ⊇ P (PA) and R(T) ⊇ R(PA). If
we could recusively separate P (T) and R(T) we would also separate P (PA) and R(PA)
contradicting 9.8.

If T were complete, then P (T) would itself be recursive (by 4.8) contradicting 9.8.

7

§10. Gödel’s Incompleteness Theorem II: Arithmetization of Syntax:

In §9 we gave a proof of the first incompleteness theorem based on basic recursion
theoretic ideas. In this section we give a second proof which follows Gödel more closely.
We will also sketch the ideas behind the proof of the second incompleteness theorem. The
new idea of this section is the idea of Gödel codes for formulas.

We will assign a number dφe to each formula φ. We call dφe the Gödel code for φ.
Gödel coding allows us to talk about properties of formulas in the language of arithmetic.
Gödel showed that there are amazing possibilities for self reference. In particular he proved
the following striking lemma.

Lemma 10.1. (Diagonalization Lemma) Let φ(v) be a formula in the language of arith-
metic with one free variable v. There is a sentence ψ such that

PA ` ψ ↔ φ(dψe).

Intuitively the sentence ψ says “My code has property φ”. Strictly speaking we should

write PA ` ψ ↔ φ(d̂φe) but we will drop the ̂ when no confusion arises.

We will begin shortly the work needed to prove the diagonalization lemma and to
deduce the incompleteness theorem from it, but first let us deduce one simple and important
corollary.

A formula Γ(v) is called a truth definition if and only if

N |= ψ if and only if N |= Γ(dψe).

for all sentences ψ

Corollary 10.2. (Tarski’s Undefinability of Truth) There are no truth definitions.

Proof.

Suppose Γ(v) is a truth definition. Apply the diagonalization lemma to ¬Γ to obtain a
sentence ψ such that PA ` ψ ↔ ¬Γ(dψe). Clearly ψ shows that Γ is not a truth definition.

We now begin the mechanics of coding. We fix a primitive recursive method of coding
finite sequences. We let 〈a1, . . . , am〉 be the code for the sequence (a1, . . . , am). We choose
the coding so that:

i) every natural number codes a sequence,

ii) n 7→ l(n) is primitive recursive, where l(n) is the length of the sequence coded by
n, and

iii) (n, i) 7→ (n)i is primitive recursive, where (n)i is the ith-element of the sequence
coded by n if i ≤ l(n) and (n)i = 0 if i > l(n).

For example we could use the coding τ described in §6.

8

Let us assume that our language is L = {+, ·, <, 0, 1} and that we use only the
connectives ∧ and ¬, the quantifier ∃ and variables v0, v1, We assign each symbol a
code as follows.

d0e = 〈0, 0〉 d1e = 〈0, 1〉 dvie = 〈1, i〉
d+e = 〈2, 0〉 d·e = 〈2, 1〉 d<e = 〈3, 0〉
d=e = 〈3, 1〉 d∧e = 〈4, 0〉 d¬e = 〈4, 1〉
d∃e = 〈5, 0〉

We inductively define coding of terms as follows. If t1 and t2 are terms then

dt1 + t2e = 〈d+e, dt1e, dt2e〉 and

dt1 · t2e = 〈d·e, dt1e, dt2e〉.

If t1 and t2 are terms, we code atomic formulas as follows.

dt1 = t2e = 〈d=e, dt1e, dt2e〉 and

dt1 < t2e = 〈d<e, dt1e, dt2e〉.

Finally if φ and ψ are formulas then

d¬φe = 〈d¬e, dφe〉,

dφ ∧ ψe = 〈d∧e, dφe, dψe〉 and

d∃viφe = 〈d∧e, dvie, dφe〉.

We will see that all basic syntactic properties of formulas are primitive recursive. It is
easy to see for example that the maps dφe 7→ d¬φe and (dφe, dψe) 7→ dφ∧ψe are primitive
recursive.

Lemma 10.3. The predicates “n codes a term” and “n codes a formula” are primitive
recursive.

Proof.

Let

T (x) =

{
1 x = d0e > or x = d1e
1 l(x) = 3, (x)1 = 〈2, 0〉 or 〈2, 1〉, T ((x)2) = 1 and T ((x)3) = 1
0 otherwise

.

Clearly T is primitive recursive and T (n) = 1 if and only if n codes a term. Let

F (x) =





1 l(x) = 3, (x)1 = d=e or d<e, T ((x)1) = 1 and T ((x)2) = 1
1 l(x) = 2, (x)1 = d¬e and F ((x)2) = 1
1 l(x) = 3, (x)1 = d∧e and F ((x)2) = F ((x)3) = 1
1 l(x) = 3, (x)1 = d∃e, ∃i < x (x)2 = 〈1, i〉 and F ((x)3) = 1
0 otherwise

.

Then F is primitive recurisive and F (n) = 1 if and only if n is the code for a formula.

9

The next lemmas will be the key to proving the diagonalization lemma.

Lemma 10.4. There is a primitive recursive function s such that if t is a term and
i, y ∈ N, then s(dte, i, y) is the code for the term obtained by replacing all occurences of
vi in t by the term ŷ (where ŷ is the term 1 + . . .+ 1︸ ︷︷ ︸

y−times

).

Proof. We define s by:

s(x, i, y) =





x x = d0e,x = d1e or x = dvje where i 6= j

dŷe x = dvie
〈+, s(t1, i, y), s(t2, i, y)〉 x = 〈+, t1, t2〉
〈·, s(t1, i, y), s(t2, i, y)〉 x = 〈·, t1, t2〉
0 otherwise

Clearly s is primitive recursive and s is the desired function.

Lemma 10.5. There is a primitive recursive function sub such that sub(dφe, i, y) = dψe
where ψ is the formula obtained by substituting ŷ for each free occurence of vi in φ. .

Proof.
We may define sub by

sub(x, i, y) =





〈d=e, s(t1, i, y), s(t2, i, y)〉 x = 〈d=e, t1, t2〉
〈d<e, s(t1, i, y), s(t2, i, y)〉 x = 〈d<e, t1, t2〉
〈d¬e, sub(dφe, i, y)〉 x = 〈d¬e, dφe〉
〈d∧e, sub(dφe, i, y), sub(dψe, i, y)〉 x = 〈d∧e, dφe, dψe〉
〈d∃e, dvje, sub(dφe, i, y)〉 x = 〈d∃e, dvje, dφe〉 and i 6= j

〈d∃e, dvie, dφe〉 x = 〈d∃e, dvie, dφe〉
0 otherwise.

We are now ready to prove the diagonalization lemma 10.1. Let φ(v0) be an L-formula
with one free variable v0. Let S(x, y, z, w) be an L-formula representing the primitive
function sub.

Let θ(v0) = ∃y (S(v0, 0, v0, y) ∧ φ(y)) That is, θ(v0) asserts φ(sub(v0, 0, v0)). Let
m = dθ(v0)e and let ψ = θ(m).

Then
PA ` ψ ↔ θ(m)

↔ ∃y S(m, 0,m, y)∧ φ(y)

↔ ∃y S(dθ(v0)e, 0,m, y)∧ φ(y)

↔ ∃y y = dθ(m)e ∧ φ(y)

↔ φ(dθ(m)e)

↔ φ(dψe)

as desired.

10

Our coding will be slightly easier if we assume that the theory T has a primitive
recursive axiomatization. The next lemma shows that this is no loss of generality.

Lemma 10.6. (Craig’s trick) Suppose T is a recusively axiomatized L-theory. Then there
is a primitive recursively axiomatized L-theory T ∗ such that T and T ∗ have the same
consequences (ie. T ` φ⇔ T ∗ ` φ for any L-sentence φ).

Proof.
Suppose We = {dφe : φ ∈ T}. Let

T ∗ = {φ ∧ . . . ∧ φ︸ ︷︷ ︸
s−times

: dφe ∈W s
e }.

It is easy to see that T and T ∗ have the same logical consequences. On the other hand,
since “x ∈W s

e ” is a primitive recursive predicate, {dψe : ψ ∈ T ∗} is primitive recursive.

Note that in fact Craig’s trick works just as well for recursively enumerable theories
T .

Lemma 10.7. Let T be a primitive recursive L-theory. Let ProvT(x, y) be the predicate
“x is a proof from T if the formula with Gödel code y”. The predicate ProvT is primitive
recursive.

Proof.
Basicly, ProvT(x, y) if and only if ∀i ≤ l(x) (x)i ∈ T or (x)i follows from previous

(x)j be an inference rule.
This can be coded in a primitive recursive way. We leave the details to the reader.

Let ψProvT
(x, y) be an L-formula representing ProvT in PA and let

PrT(y)⇔ ∃x ψProvT(x, y)

Using PrT we can give Gödel’s proof of the first incompleteness theorem. Let T be a
consistent primitive recursive theory extending PA. By the diagonalization lemma there
is a sentence φ such that PA ` φ↔ ¬PrT(φ). We call φ the Gödel sentence for T.

Theorem 10.8 (First Incompleteness theorem) Let φ be the Gödel sentence for T. Then
T 6` φ. Moreover if N |= T, then T 6` ¬φ.

Proof.
If T ` φ, then there is an n ∈ N such that ProvT(n, dφe). But then

PA ` ψProvT(n, dφe) and PA ` PrT(dφe) and PA ` ¬φ. Thus T ` ¬φ, contradicting the
consistency of T. Hence T 6` φ.

If N 6|= φ, then N |= PrT(dφe) and hence there is m ∈ N such that
N |= ψProvT(m, dφe) and m really is the code for a proof of φ from T. But then T ` φ
and N |= φ a contradiction, thus N |= φ. Hence if N |= T, then T 6` ¬φ.

11

A slightly different diagonalization gives a different proof of the incompleteness result
from corollary 9.9.

Theorem 10.9. Let T be a recursively axiomatized consistent extension of PA, then T

is incomplete.

Proof.
Let θ(x, y) be an L-formula representing the primitive recursive relation “x and y are

Gödel codes for formulas and x codes the negation of the formula coded by y”.
Let Pr∗

T
(v) be the formula

∃y (ProvT(y, v) ∧ ∀z (θ(z, v)→ ∀x < y ¬ProvT(x, z))).

Thus Pr∗
T
(dφe) asserts that there is x coding a proof of φ and no y < x codes a proof of

¬φ.
By the diagonalizaiton lemma there is a sentence φ such that

PA ` φ↔ ¬Pr∗
T
(dφe).

We call φ a Rosser sentence.
Suppose T ` φ. Then there is a natural number n coding a proof of φ and since T

is consistent if m < n, then m does not code a proof of ¬φ. But then if M |= T , then
M |= Pr∗

T
(dφe)) and M |= ¬φ a contradiction. Thus T 6` φ.

Suppose T ` ¬φ. Then there is a natural number n coding a proof of ¬φ and ifm < n,
then m does not code a proof of φ. Thus if M |= T, then M |= ¬Pr∗

T
(dφe), so M |= φ, a

contradiction. Thus T 6` ¬φ.

The next lemma summarizes the facts about provability that one must verify in PA
to prove the second incompleteness theorem.

Lemma 10.10. Let T ⊇ PA be a primitive recursive theory and let φ and ψ be L-
sentences. Then the following derivability conditions hold

D1. If T ` φ, then PA ` PrT(dφe).

D2. If PA ` PrT(dφe), then PA ` PrT(dPrT(dφe)e).

D3. PA ` (PrT(dφe) ∧ PrT(dφ→ ψe))→ PrT(dψe)

D4. PA ` (PrT(dφe) ∧ PrT(dψe))→ PrT(dφe)

D5. PA ` PrT+ψ(dφe)↔ PrT(dψ → φe).

Proof.
D1 is easy. If n codes a proof of φ,then PA ` ProvT(n, dφe), so PA ` PrT(dφe).

D3, D4 and D5 are proved by constructing a primitive recursive function which takes the
two given proofs and produces the desired proof. D2 requires more work. See Boolos and
Jeffries, Computability and Logic for details.

12

Theorem 10.11 (Second Incompleteness Theorem) Let T be a consistent recursively
axiomatized theory such that T ⊇ PA. Let Con(T) be the sentence ¬PrT(d0 = 1e).
Then T 6` Con(T).

Proof.

Let φ be the Gödel sentence such that PA ` φ↔ ¬PrT(dφe).

We will show that PA ` φ↔ Con(T). Then, by 10.8, PA 6` φ, so PA 6` Con(T).

Since we can derive anything from a contradiction, T ` 0 = 1→ φ. Thus by D1,

PA ` PrT(d0 = 1→ φe).

Thus by D3, PA ` ¬Con(T)→ PrT(dφe). By choice of φ, we have

PA ` ¬Con(T)→ ¬φ

and taking the contrapositive

PA ` φ→ Con(T).

On the otherhand, by D2

PA ` PrT(dφe)→ PrT(dPrT(dφe)e).

By choice of φ, PA ` PrT(φ)→ ¬φ. Thus by D1 and D3

PA ` PrT(dPrT(dφe)e)→ PrT(d¬φe).

Thus

PA ` PrT(dφe)→ PrT(d¬φe).

Using D4 we see that

PA ` PrT(dφe)→ PrT(dφ ∧ ¬φe).

But then by D1 and D2

PA ` PrT(dφe)→ PrT(d0 = 1e).

So PA ` Con(T)→ φ, as desired.

By the diagonalization lemma there are sentences φ such that PA ` φ ↔ PrT(φ).
Henkin asked if such a sentence is provable? The following result shows that it is.

13

Corollay 10.12. (Löb’s Theorem) Let T be a consisitent recursively axiomatized theory
extending PA and let φ be any sentence. Then

T ` PrT(dφe)→ φ ⇔ T ` φ.

Proof.
(⇐) This is clear since if T ` φ, then T ` ψ → φ for any sentence ψ.
(⇒). Suppose T 6` φ. Then T + ¬φ is consistent and by the second incompleteness

theorem
T+ ¬φ 6` Con(T+ ¬φ).

By D5,
T+ ¬φ 6` ¬PrT(d¬φ→ 0 = 1e).

Since T ` (¬φ→ 0 = 1)→ φ, by D1,

T ` PrT(d(¬φ→ 0 = 1)→ φe).

Thus, by D3,
T ` PrT(d¬φ→ 0 = 1e)→ PrT(φ).

Thus, T+ ¬φ 6` ¬PrT(φ). So T 6` PrT(φ)→ φ, as desired.

14

