
Part II

Computability

6 Models of Computation

What is a computable function? Our modern intuition is that a function f :
N→ N is computable if there is a a program in a computer language like C++,
PASCAL or LISP such that if we had an idealized computer, with unlimited
memory, and we ran the program on input n it would eventually halt and output
f(n).
While this definition could be made precise, it is rather unwieldy to try to

analyze a complex modern programming language and an idealized computer.
We begin this section by presenting two possible candidates for the class of com-
putable functions. The first will be based on register machines, a very primitive
version of a computer. The second class will be defined more mathematically.
We will then prove that these two classes of functions are the same. Church’s
Thesis will assert that this class of functions is exactly the class of all computable
functions.
Church’s Thesis should be though of as a statement of philosophy or physics

rather than a mathematical conjecture. It asserts that the definitions we have
given completely capture our intuition of what can be computed. There is a
great deal of evidence for Church’s Thesis. In particular, there is no know notion
of deterministic computation, including C++-computable or the modern notion
of quantum computable, that gives rise to computable functions that are not
included in our simple classes. 1

Register Machines

We will take register machines as our basic model of computations. The pro-
gramming language for register machines will be a simple type of assembly
language. This choice is something of a compromise. Register machines are not
as simple as Turing machines, but they are much easier to program. It is not as
easy to write complicated programs as it would be in a modern programming
language like C++ or PASCAL, but it will be much easier to analyze the basic
steps of a computation.
In our model of computation we have infinitely many registers R1, R2,

At any stage of the computation register Ri will store a nonnegative integer ri.

Definition 6.1 A register machine program is a finite sequence I1, . . . , In where
each Ij is one of the following:
i) Z(n): set Rn to zero; rn ← 0;

1I do not include notions of random computations or analog computations. But our model

could easily be extended to take these into account.

On the other hand issues like time and space complexity or feasability may vary as we

change the model.

35

ii) S(n): increment Rn by one; rn ← rn + 1;
iii) T(n,m): transfer contents of Rn to Rm; rm ← rn;
iv) J(n,m,s), where 1 ≤ s ≤ n: if rn = rm, then go to Is otherwise go to the

next instruction;
v) HALT

and In is HALT.

A register machine must be provided with both a program and an initial
configuration of the registers. A computation procedes by sequentially following
the instructions. Note that for any program P there is a number N such, no
matter what the initial configuration of the registers is, any computation with
P will use at most registers R1, . . . , RN .

Example 6.2 We give a program which, if we start with n in R1, ends with
R1 containing n− 1 if n > 0 and 0 if n = 0.

1) Z(2)
2) J(1,2,10)
3) Z(3)
4) S(2)
5) J(1,2,9)
6) S(2)
7) S(3)
8) J(1,1,4)
9) T(3,1)
10) HALT

We first test to see if R1 contains 0. If it does
we halt. If not, we make r2 = 1 and r3 = 0 and
test to see if r1 = r2 have the same contents. If
they do, we move r3 to R1 and halt. Otherwise,
we increment r2 and r3 until r1 = r2. Since r3
will always be one less than r2, this produces the
desired result.

Example 6.3 We give a program which if adds the contents of R1 and R2 and
leaves the sum in R1.

We set r3 ← 0. We increment R3 and R1 until r3 = r2.

1) Z(3)
2) J(2,3,6)
3) S(1)
4) S(3)
5) J(1,1,2)
6) HALT

Example 6.4 We give a program to multiply the contents of R1 and R2 and
leave the product in R1.

The main idea is that we will add r1 to itself r2 times using R3 to store the
intermediate results. R4 will be a counter to tell us how many times we have
already added r1 to itself. We add r1 to r3 by incrementing R3, r1 times. We
use R5 to count how many times we have incremented R3.

36

1) Z(3)
2) Z(4)
3) J(2,4,10)
4) Z(5)
5) J(1,5,9)
6) S(3)
7) S(5)
8) J(1,1,5)
9) S(4)
10) T(3,1)
11) HALT

Note that lines 4)–8) are just a slightly modified version of Example 6.3. We
add r1 to r3 storing the result in R3. We can think of this as a “subroutine”.
It is easy to see that we could add a command to our language A(n,m,s) that
does:

rs ← rn + rm.

Any program written with this additional command could be rewritten in our
original language. Similarly, using Example 6.2 we could add a command D(n)
that decrements Rn if rn > 0 and leaves Rn unchange if rn = 0.
We give one more example of a program that, on some initial configurations,

runs for ever.

Example 6.5 We give a program such that if r1 is even halts with r1/2 in R1
and otherwise never halts.

1) Z(2)
2) Z(3)
3) J(1,2,8)
4) S(2)
5) S(2)
6) S(3)
7) J(1,1,2)
8) T(3,1)
9) HALT

We next define what it means for a function f : Nk → N to be computable
by a register machine. The last example shows that we need to take partial
functions into account.
Suppose P is a register machine program. If x = (x1, . . . , xk) we consider

the computation where we begin with initial configuration r1 = x1, . . . , rk = xk
and rn = 0 for n > k. If this computation halts we say that P halts on input x.

Definition 6.6 Suppose A ⊆ Nk. We say f : A → N is an RM-computable
partial function if there is a register machine program P such that:
i) if x 6∈ A, then P does not halt on input x;
ii) if x ∈ A, then P halts on input x with f(x) in register R1.

37

We could start showing more and more functions are RM-computable by
writing more complicated programs. Instead we will give mathematically define
an interesting class of fuctions and prove it is exactly the class of RM-computable
functions.

Primitive Recursive Functions

Definition 6.7 The class of primitive recursive functions is the smallest class
C of functions such that:
i) the zero function, z(x) = 0 is in C,
ii) the sucessor function s(x) = x+ 1 is in C,
iii) for all n and all i ≤ n the projection function πni (x1 . . . xn) = xi, is in C

(in particular the identity function on N is in C),
iv) (Composition Rule) If g1 . . . gm, h ∈ C, where gi : Nn → N and h : Nm →

N, then
f(x) = h(g1(x) . . . gm(x))

is in C,
v) (Primitive Recursion) If g, h ∈ C where g : Nn−1 → N and h : Nn+1 → N,

then f ∈ C where:

f(x, 0) = g(x)
f(x, y + 1) = h(x, y, f(x, y)).

We now give a large number of examples of primitive recursive functions with
derivations showing that they are primitive recursive. A derivation is a sequence
of functions f1 . . . fm such that each fi is either z, s or π

n
i or is obtained from

earlier functions by compostion or primitive recursion.
We will use Church’s lambda notation. For example λx, y, z[xy + z] is the

function f where f(x, y, z) = xy + z.

1) the n-ary zero function: λx1 . . . xn[0]
f1 = πni , f2 = z, f3 = f2 ◦ f1.

2) the constant function λx[2]
f1 = s, f2 = z, f3 = s ◦ z, f4 = s ◦ f3.

3) λx, y[x + y]
f1 = π11 = λx[x], f2 = π33 , f3 = s, f4 = f3 ◦ f4 = λx, y, z[z + 1], f5 =

λx, y[x+ y] (by primitive recursion using g = f1 and h = f4).

The formal derivations are not very inlightening so we give an informal prim-
itive recursive defintion of addition (and henceforth only give informal defin-
tions):

x+ 0 = x
x+ (y + 1) = s(x+ y).

38

4) multiplication
x · 0 = 0
x · (y + 1) = xy + x.

5) exponentiation
x0 = 1
xy+1 = xy · x.

6) predecesor:

pr(x) =

{
0, if x = 0;
x− 1, otherwise.

pr(0) = 0
pr(y + 1) = y.

7) sign

sgn(x) =

{
0, if x = 0;
1, otherwise.

sgn(0) = 0
sgn(y + 1) = 1

8) −·

x −· y =

{
0, if y ≤ x;
x− y, otherwise.

x −· 0 = x
x −· (y + 1) = pr(x −· y)

9) Factorials
0! = 1
(n+ 1)! = n!(n+ 1)

If f(x, y) is primitive recursive then so is

λx, n[
∑

y≤n

f(x, y)]

.
F (x, 0) = f(x, 0)
F (x, y + 1) = F (x, y) + f(x, y + 1).

Similary λx, n[
∏
y≤n f(x, y)] is primitive recursive.

We say that R(x) is a primitive recursive predicate if it is a 0-1 valued
primitive recursive function. If P and Q are primitive recursive predicates then
so are:

P ∧Q(x) = P (x) ·Q(x)
P ∨Q(x) = sgn(P (x) +Q(x))
¬P (x) = 1 −· P (x)

10) x = y is a primitive recursive relation.
The characteristic function of x = y is 1 −· (sgn(x −· y) + sgn(y −· x))

39

Also if P (x, y) is a primitive recursive relation and g(x) is primitive recursive,
then

∃y ≤ g(x)P (x, y) = sgn(
∑

y≤g(x)

P (x, y)), and

∀y ≤ g(x)P (x, y) = sgn(
∏

y≤g(x)

P (x, y))

are primitive recursive relations.

For example:

11) x|y = ∃z ≤ y xz = y is primitive recursive.

Exercise 6.8 Show that x ≤ y and x < y are primitive recursive relations.

Exercise 6.9 (Definition by cases): Suppose g and h are primitive recursive
functions and P is a primitive recursive predcate. Then f is primitive recursive
where:

f(x) =

{
g(x), if P (x);
h(x) otherwise.

Exercise 6.10 Suppose f(x, y) is primitive recursive. Let g(x, z) = max{f(x, y) :
y ≤ z} and h(x, z) = min{f(x, y) : y ≤ z}. Show that g and h are primitive
recursive.

If P (x, y) is a primitive recursive function define µy P (x, y) to be the least
y such that P (x, y) if such a y exists and otherwise µy P (x, y) is undefined. In
general λx[µy P (x, y)] is only a partial function. Even if it is total, it will not
in general be primitive recursive. The next excercise gives the best we can do
primitive recursively.

Exercise 6.11 Let P (x, y) be a primitive recursive predicate and g(x) a prim-
itive recursive function. Let

f(x) =

{
0, if ∀y ≤ g(x) ¬P (x, y);
µy P (x, y), otherwise.

Then f is primitive recursive.

We next show that coding and decoding of sequences is primitive recursive.

12) “x is prime” is a primitive recursive predicate.
x is prime if and only if x 6= 0 ∧ x 6= 1 ∧ ∀y ≤ pr(x) ¬(y|x).

13) We next show that the function λn[pn] is primitive recursive, where pn is the
nth prime number (and p0 = 1). To show this we use the following consequence
of Euclid’s proof that there are infinitely many primes. For any number n ≥ 1
there is a prime number p wich that n < p ≤ n! + 1. Thus:

p0 = 1

40

pn+1 = µx ≤ pn! Prime(x).

We code the sequence (n1 . . . nm) by x =
∏
pni+1
i .

14) x codes a sequence is a primitive recursive predicate.
Seq(x) if and only if ∀p ≤ x∀q ≤ p [(Prime(p) ∧ Prime(q) ∧ p|x)→ q|x].

15) Define l(x) to be 0 if x does not code a sequence, otherwise let l(x) be the
length of the sequence coded by x.

l(x) =

{
0, ¬Seq(x),
max m(pm|x), otherwise.

16) Define (x)i to be the i
th element of the sequence coded by x if x codes a

sequence of length at least i, otherwise it is zero.

(x)i =

{
max n(pn+1i |x), Seq(x) ∧ i ≤ l(x),
0, otherwise.

We next show that we can simultaneously define several functions by primitive

recursion.

Lemma 6.12 Suppose g1, . . . , gn : Nk → N , h1, . . . , hn : Nk + n+ 1 → N are
primitive recursive and we define f1, . . . , fn : Nk+1 → N by

fi(x, 0) = gi(x)

fi(x,m+ 1) = hi(x,m, f1(x,m), . . . , fn(x,m)).

Then f1, . . . , fn are primitive recursive.

Proof We define a primitive recursive function F : Nk+1 → N such that

F (x,m) =
∏n
i=1 p

fi(x,m)
i . Then we will have fi(x,m) = v(pi, F (x,m)). Let

F (x, 0) =
n∏

i=1

p
gi(x)
i

F (x,m+ 1) =

n∏

i=1

p
hi(x,m,v(p1,F (x,m)),...,v(pn,F (x,m)))
i .

Then F is primitive recursive and f1, . . . , fm are primitive recursive.

The primitive recursive functions do not exhaust the functions computable
by algorithms. Each primitive recursive function has a derivation. As usual
we can code each derivation by a natural number. We give a listing of all the
primitive recursive functions. Define Fn to be z if n is does not code a derivation,
otherwise Fn is the function with derivation coded by n. Intuitively we can do
this on such a way that G = λn, x[Fn(x)] is “computable”. If this function is
primitive recurive, then so is the function f(x) = G(x, x)+ 1. But f can not be
primitive recursive, for if f = Fn, then f(n) = G(n, n)+1 = Fn(n)+1 = f(n)+1.
Thus G is “computable”, but not primitive recursive.

41

Exercise 6.13 We can give a more concrete example of a “computable” non-
primitive recursive function. For any function F we define the nth iterate of F
as follows:

F (0)(x) = x
F (n+1)(x) = F (F (n)(x))

We now define a sequence of functions f0, f1
f0(x) = x+ 1

fn+1(x) = f
(x)
n (x).

Define the Ackermann function, A(x) = fx(x).
a) Show that each fi is primitive recursive.
b) We say f ¿ g if there is a number n such that for allm > n, f(m) < g(m).

Show that for any primitive recursive function g there is an n such that g ¿ fn.
c) Show that for all n, fn ¿ A. Thus the Ackermann function is not primitive

recursive.
The argument above shows that for any class of total computable functions,

we can not give a listing H1, H2 . . . such that the function λx, y[Hx(y)] is com-
putable. For this reason we will also consider partial computable functions. The
following definition gives a natural extension of the primitive recursive functions.

The Recursive Funcitons

Definition 6.14 The class of recursive functions is the smallest class C of
partial functions, containing the the zero function, succesor, and all projection
functions and closed under composition, primitive recursion and
vi) (Unboundend Search) If f(x, y) is in C, then so is F where F (x) is the

least y such that f(x, y) = 0 and for all z < yf(x, z) is defined. As above we
denote F as µy f(x, y) = 0.

We use ↑ to denote “undefined”.
For example let

g(n) =

{
1, ∃x, y, z xn + yn = zn;
↑, otherwise.

Then g is a recursive function.

Our intuition tells us that every recursive function is computable. We will
prove that the RM-computable functions are exactly the partial recursive func-
tions.

Theorem 6.15 Every recursive function is RM-computable.

Proof Clearly the basic functions z, s and πni are RM-computable. Thus we
need only show that the RM-computable functions are closed under composition,
primitive recursion and unbounded search.

claim 1 Suppose f1, . . . , fn : Nm → N and g : Nn → N are RM-computable.
Let h(x) = g(f1(x), . . . , fn(x)), then h is RM-computable.

42

Suppose the computation of Pi is a program to compute fi. By modifying
the program slightly we may assume that:
• Pi does not destroy the input (ie. does not alter registers R1, . . . , Rm)
• uses only registers Rn+i+1, Rn+i+2, . . .
• halts with fi(x) in Rn+i.

[If necessary we modify Pi to P
∗
i which starts by copying Rj into Rn+ij for

j ≤ n, and then is identical to Pi except that for all j the role of Rj is played
by Rn+i+j .]
The program for computing h begins by running the programs P1, . . . , Pm

(except that HALTS are replaced by jumping to the begining of the next pro-
gram). Once we run these programs the registers contain a1, . . . , an, f1(a), . . . , fm(a).
We next write f1(a), . . . , fm(a) into the first m-registers and erase all of the

other registers which were used in the earlier computations. We now run the
program to compute g.

claim 2 Suppose h : Nm → N and g : Nm+2 → N are RM-computatble (possibly
partial) functions. Let f be defined from g and h by primitive recursion. Then
f is RM-computable.
step 0:
We start with x, y in the first m+ 1-registers.
• let rm+2 ← 0; this will be a counter
• copy x into Rm+3, . . . , R2m+2
• run the program for h suitably modified such that we end with the config-

uration
(x, y, 0, h(x), 0, 0, . . .).

In general at the end of step s we will have (x, y, s, f(x, s), 0, 0, . . .).

step s+ 1
• if rm+2 = rm+1 we are done, fiddle with things so that the configuration

is
(f(x, s), 0, 0, . . .)

and halt, otherwise.
• increment rm+3. Move things around so that we have configuration

(x, y, s+ 1, x, y, f(x, s), 0, 0, . . .).

Run the program for g suitably modified so that we end with configuration

(x, y, s+ 1, f(x, s+ 1), 0, 0, . . .).

• Go to next step.

This program computes f

claim 3 If f(x, y) is RM-computable, then µy f(x, y) = 0 is RM-computable.
Consider the following program:
• Start with configuration (x, 0, 0, 0, . . .).

stage s:

43

• At the beging of stage s we will have configuration.

(x, s, 0, 0, . . .)

• Change configuration to (x, s, x, s, 0, . . .).
• Run modified version of program for f if this halts we will have configu-

ration
(x, s, f(x, s), 0, 0 . . .).

• If f(x, s) = 0 halt with configuration (s, 0, 0, . . .). If not change to config-
uration (x, s+ 1, 0, 0, . . .) and go to next stage.

If there is an s such that f(x, s) = 0 and for all t < s, f(t, s) ↓6= 0, then we
will eventually halt and output s. Otherwise the search will continue forever.

Thus every recursive function is RM-computable.

Theorem 6.16 Every RM-computable function is recursive.

Proof Let f : Nn → N be RM-computable (possibly partial). Let I1, . . . , Im
be a program which computes f . Suppose this program uses only registers
R1, . . . , RN . We define two primitive recursive functions g1, . . . , gN : Nm+1 → N
and j : Nm+1 → N such that:

gi(x, s) = contents of Ri at stage s on inputx

and

j(x, s) =

{
0 if the machine on input x has halted by stage s
j if Ij is the next instruction to be executed.

Let h(x) = µs j(x, s) = 0. Then f(x) = g1(x, h(x)).

The construction of gi and j are routine but tedious primitive recursions.
We give one example. Consider the program to compute

f(x, y) =

{
x− y y ≤ x
↑ y > x.

1) Z(3)
2) J(1,2,6)
3) S(2)
4) S(3)
5) J(1,1,2)
6) T(3,1)

j(x, y, s) =

1 s = 0
2 s = 1 or j(x, y, s− 1) = 5
3 j(x, y, s− 1) = 2
4 j(x, y, s− 1) = 3
5 j(x,y,s-1)=4
6 j(x, y, s− 1) = 2 and g2(x, y, s− 1) = g1(x, y, s− 1)
7 j(x, y, s− 1) = 6
0 j(x, y, s− 1) = 7 or 0.

44

g1(x, y, 0) = x

g2(x, y, 0) = y

g2(x, y, s+ 1) =

{
g2(x, y, s) j(x, y, s) 6= 3
g2(x, y, s) + 1 otherwise.

g3(x, y, 0) = 0

g3(x, y, s+ 1) =

{
g3(x, y, s) j(x, y, s) 6= 4
g3(x, y, s) + 1 otherwise.

These functions are clearly primitive recursive.

Church’s Thesis

Church’s Thesis A partial function is computable if and only if it is partial
recursive

Church’s Thesis asserts that the partial recursive functions, or the RM-
computable functions, completely capture our intuitve notion of computability.
We will use Church’s Thesis frequently in arguments by giving an intuitive

argument that a function is computable and then asserting that therefore it
is recursive or RM-computable. Whenever we make such an argument, we are
asserting that, if challenged, we could produce the RM-machine code that would
compute the function.
There is a great deal of evidence for Church’s Thesis. Any reasonable notion

of “computabile function” has been shown to be equivalent to “partial recursive”
or “RM-computable”. Indeed, Church first stated the conjecture for functions
definable in λ-calculus, an ancestor of the LISP programming language.

Random Access Machines

We give one more argument towards the plausibility of Church’s thesis. One
aspect of modern computing that is missing in register machines is dynamic
access to memory. In a modern computer language we can compute a number
n and then store another number in memory cell n. We will describe a general-
ization of register machines that allows this kind of dynamic access and prove
that they do not allow us to compute new functions.

Definition 6.17 A Random Access Machine is one where we have memory
locations M0,M1,M2,M3, Let mi be the contents of Mi. A program for
a random access machine is a finite sequence of instructions I1, . . . , Im. Where
the allowable instructions are:
i) Z(n); set mn to zero

45

ii) S(n); increment mn

iii) J(i,j,l); if mi = mj , go to instruction l.
iv) T(i,j); transfer the contents of Mmi

to Mmj

v) HALT

The key difference is that we are allowed to specifiy in the program what
address we want to store something in.
A function f is said to be RAM-computable if there is a random access

machine program which given initial configuration (x, 0, 0, . . .) halts with f(x)
in M0 if x ∈ dom(f) and does not halt if x 6∈ dom(f).

Exercise 6.18 Every RM-computable function is RAM-compuable.

We next out line the proof that every RAM-computable function is RM-
computable. The key idea is to code configurations of the RAM as a single
number. Suppose at some stage s, n is the largest memory location that we
have used. Then the configuration of the machine is given by the sequence
(m1, . . . ,mn, 0, 0, 0, . . .).
We code this configuration with the number

∏
pmi

i . All of the operations
of the machine correspond to simple arithmetic operations on the code. Let
v(p, x) = largest power of p dividing x. Note that v(pi, x) extracts the contents
of Mi from the code x.
For example: • Z(n): corresponds to the operation

x 7→
x

p
v(p,x)
n

.

• S(n): corresponds to
x 7→ xpn.

• T(i,j): Let l = v(pj , x) and k = v(pi, x). The new configuration is coded
by

x

p
v(pl,x)
l

p
v(pk,x)
l

Exercise 6.19 Using the above idea show that any RAM computable function
is RM computable.

Henceforth we will usually use Church’s thesis blindly. We will say that a
partial function is computable if it is RM-computable with full confidence that
anything which is intuitively computable can be done with a register machine.

7 Universal Machines and Undecidability

Our main goal in this section is to prove that there is a computable partial
function Ψ : N2 → N such that if φn is the function

φn(x) = Ψ(n, x)

46

then φ0, φ1, . . . is an enumeration of all computable partial functions.
We will code register machine programs by natural numbers and we will

arange the coding so that each number codes a program. If Pn is the program
with code n, then φn(x) will be the result of running Pn on input x.
The register machine computing Ψ is a universal register machine. It behaves

like a modern compiler. If f is a computable function we find e such that f = φe
and compute f(x) by computing Ψ(e, x).

Our first task is to code register machine programs. We will use a more
subtle coding than the one of §6 to insure that every natural number codes a
program.

Let π : N× N→ N by π(m,n) = 2m(2n+ 1)− 1.

Lemma 7.1 π is a bijection and both π and π−1 are computable (indeed prim-
itive recursive).

Proof Clearly π is primitive recursive. To calculate π−1(x), factor x+ 1 = yz
where y is a power of 2 and z is odd. Then m = log2 y and n =

z−1
2 .

Once we can code pairs it is easy to code triples. We view (a, b, c) as ((a, b), c).
Let ψ : N3 → N by

ψ(p, q, r) = π(π(p, q), r).

Let I be the set of all instructions for register machines. There is β : I → N
a computable bijections.

β(HALT) = 0
β(Z(n)) = 4(n− 1) + 1
β(S(n)) = 4(n− 1) + 2
β(T(m,n)) = 4(π(m− 1, n− 1)) + 3
β(J(m,n, r)) = 4(ψ(m− 1, n− 1, r − 1)) + 4

β is easy to decode. For example for what i is β(i) = 47? Since 47 ≺
3(mod4), i must code T(m,n) for some m and n, where π(m − 1, n − 1) =
47−3
4 = 11. Since 11 + 1 = 22(2 · 1 + 1), π(2, 1) = 11. Thus i codes the

instruction T (3, 2).

We also want
τ :

⋃

k>0

Nk → N

a computable bijection with computable inverse. We let

τ(a1, . . . , ak) = 2
a1 + 2a1+a2+1 + 2a1+a2+a3+2 . . .+ 2a1+...+ak+k−1 − 1.

Given x we calculate τ−1(x) as follows:
i) find the binary expansion of x+ 1 = 2b1 + . . .+ 2bk

ii) Let a1 = b1 and ai+1 = bi+1 − bi − 1 for 1 ≤ i < k.

47

For example we calculate τ−1(47): 47 + 1 = 2 + 22 + 23 + 25. Thus a1 = 1,
a2 = 0, a3 = 0,and a4 = 1. Thus π

−1(47) = (1, 0, 0, 1) [note: 47 = 21+21+0+1+
21+0+0+2 + 21+0+0+1+3 − 1]

We now give a method for coding all register machine programs. Let P be
the program I1, . . . , Im by

γ(P) = τ(β(I1), . . . , β(Im)).

For m ∈ N, let Pm = γ−1(m). Let φ
(n)
m be the n-ary function computed by

program Pm. Clearly φ
(n)
0 , φ

(n)
1 , . . . is a list of all partial recursive functions in

n-variables. [We will supress the superscript if it is clear]
If f is computable we say that n is an index for f if f = φn. There will

usually be many indicies for f .

Consider the partial function Ψ(n) : Nn+1 → N by Ψ(n)(e, x) = φ
(n)
e (x).

Theorem 7.2 The functions Ψ(n) are computable.

Proof For notational simplicity we will consider only the case n = 1.
Informally we compute Ψ(e, x) by decoding e to obtain the program Pe.

Simulate program Pe on input x.
We use one number to store the register configuration in the simulation.

Suppose we are using registers R1, . . . , Rm and Ri contains ri. We will code
this configuration by

c =

m∏

i=1

pri

i .

We call c the configuration code of the machine. The current state of the machine
will be σ = π(c, j) where j is the next instruction to be executed (and if we
have halted j = 0) [here π is the pairing function].
Define c(e, x, t) = configuration after t steps of program Pe on input x if we

have not yet halted. If we have halted let c(e, x, t) be the final configuration.
Let j(e, x, t) = number of the next instruction if the computation of Pe on

input x has not halted by step t and let it be 0 otherwise.
Let σ(e, x, t) = π(c(e, x, t), j(e, x, t)).

claim c, j and σ are computable (indeed they are primitive recursive).
• c(e, x, 0) = 2x and j(e, x, 0) = 1.

• Given c = c(e, x, t) and j = j(e, x, t), we compute j(e, x, t+1) and c(e, x, t+
1).

• If j = 0, then c(e, x, t+ 1) = c and j(e, x, t+ 1) = j.

• If j > 0, then decode e to find Ij .

• If Ij is I(m) then c(e, x, t+ 1) = c · pm and j(e, x, t+ 1) = j + 1.

• If Ij is Z(m) then c(e, x, t + 1) =
c
pl

m
where l is the largest such that ppm

divides c, and j(e, x, t+ 1) = j + 1.

48

• If Ij is T (n,m) then c(e, x, t+1) = c · pl−km where l is largest such that pln
divides c and k is largest such that plm divides c. Let j(e, x, t+ 1) = j + 1.

• If Ij is J(n,m, i) then c(e, x, t+ 1) = c and j(e, x, t+ 1) = i if the largest
k such that pm divides c is equal to the largest l such that pn divides c, and
otherwise j(e, x, t+ 1) = j + 1.

• If Ij is HALT, then c(e, x, t+ 1) = c and j(e, x, t) = 0.

Once we know that c and j are computable (indeed primitive recursive), we
obtain a general recursive h(e, x) = µtj(e, x, t) = 0. Then Ψ(e, x) is the largest
n such that 2n divides c(e, x, h(e, x)). Clearly Ψ is computable.
The machine that computes Ψ is called the Universal Register Machine.

Definition 7.3 Let T = {(e, x, s) : Pe on input x halts by stage s}. This
is called Kleene’s T-predicate. The arguments above show that T is primitive
recursive.

The following theorem is often useful. (For some reason it is often refered
to as the s-m-n theorem).

Lemma 7.4 (Parameterization Lemma) If f(x, y) is a computable partial
function then there is a total computable function k(x) such that for all x, k(x)
is an index for the function y 7→ f(x, y). Indeed the function k(x) can be choosen
one to one.

Proof Let P be a program computing f(x, y) [starting with x in R1 and y in
R2. Consider the following program Qn. Start with y in register 1.

1) T(2,1) r2 ← r1
2) Z(1) r1 ← 0
3) S(1) r1 ← 1
4) S(1) r1 ← 2
...

...
n+2) S(1) r1 ← n

P

If we start with input y, after step n+ 2 we will have n in R1 and y in R2.
Running the program P will compute f(n, y).
Thus the program Qn is a program to compute λy[f(n, y)]. The function k

is the function which takes us from n to a code for the program Pm. k is easily
seen to be one to one.

Definition 7.5 We say that a set A ⊂ Nm is recursive if it’s characteristic
function

χA(x) =

{
1 x ∈ A
0 x 6∈ A

is computable.

Since there are 2ℵ0 subsets of N and only ℵ0 possible algorithms, most subsets
of N are not computable. Turing gave an important natural example.

49

Let H = {(e, x) : φe(x) ↓}. We call H the halting problem.
Let K = {e : φe(e) ↓}.

Theorem 7.6 (Unsolvability of the Halting Problem) Neither H nor K
is not recursive.

Proof If H were recursive then K would be recursive so it suffices to show that
K is not recursive. Suppose K is recursive. Let P be a program computing the
characteristic function of K. Consider the following program P̂ .
• On input x, run program P . If P outputs 0, then halt. If P outputs 1,

then go into an infinite loop.
Suppose I1, . . . , Im is the program P . Let Î1, . . . Îm be the same program

where every HALT has been replaced by J(1,1,m+ 1), then P̂ is

1) Î1
...

...

m) Îm
m+1) Z(2)
m+2) J(1,2,m+ 4)
m+3) J(1,1,m+ 2)
m+4) HALT

For some e, P̂ = Pe. Then

φe(x) =

{
0 x 6∈ K
↑ x ∈ K.

Is e ∈ K?
e ∈ K ⇔ φe(e) ↓⇔ e 6∈ K

a contradiction. Thus K is not recursive.

Definition 7.7 Let Tot = {e : φe is total}.
We argue that Tot is not recursive. Suppose it were, let g be the character-

istic function of Tot. Let

f(x) =

{
φx(x) + 1 if g(x) = 1
0 if g(x) = 0.

If g is computable, then f is computable. In fact

f(x) =
{
ψ(x, x) + 1 if g(x) = 1
0 otherwise

.

Thus for some e, f = φe. Also f is easily seen to be total. But then φe(e) ↓ and
f(e) = φe(e) + 1, a contradiction.
We will give other natural examples in §8.
We will finish this section with an application to logic.

Theorem 7.8 (Church) The set of valid sentences of first order logic is not
recursive.

50

Proof For any P and any natural number n we will give a sentence θPn such
that θPn is valid if and only if P halts on input n. If we had a program to decide
if a sentence is valid, then we would have an algorithm to decide the halting
problem.

Suppose P uses registers R1, . . . , Rm. Let P = I1, . . . , Is. Let L = {0, s, R}
where s is a unary function symbol and R is an m + 1-ary predicate. We use
sn(x) to denote

s(s(. . . (x) . . .))︸ ︷︷ ︸
n times

.

The intended interpretation is that sn(0) = n and R(sn1(0), . . . , snm(0), sj(0))
holds iff and only if one possible configuration of the machine is that Ri is ni
and the next instruction is j.
For each instruction Ii we write down an axiom τi where:

i) If Ii is Z(l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, 0, xl+1, . . . , xm, s

i+1(0))).

ii) If Ii is S(l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, s(xl), xl+1, . . . , xm, s

i+1(0))).

iii) If Ii is T (i, l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, xi, xl+1, . . . , xm, s

i+1(0))).

iv) If Ii is J(i, l, j), then τi is

∀x1, . . . , xm (R(x, s
i(0))→ ((xi = xl → R(x, sj(0)) ∧ ((xi 6= xl → R(x, si+1(0))

v) If Ii is HALT, then τi is

∀x R(x, si(0))→ R(x, 0).

The sentence
R(sn(0), 0, . . . , 0, s(0))

corresponds to the initial configuration on input n.

Let θPn be

(R(sn(0), 0, . . . , 0, s(0)) ∧
s∧

i=1

τi)→ ∃x R(x, 0)

Then P halts on input n if and only if θPn is valid. If validity were recursive
then we could decide the halting problem.

51

8 Recursively Enumerable and Arithmetic Sets

Definition 8.1 A set X ⊂ N is recursively enumerable if X is the range of a
partial recursive function.
Intuitively there is a recurisve function such that f(0), f(1), . . . enumerates

all of X .

Proposition 8.2 Let X be nonempty. The following are equivalent:
i) X is recursively enumerable;
ii) X = ∅ or X is the range of a total recursive function.
iii) there is a recursive Y ⊂ Nm+1 such that X = {y : ∃x (x, y) ∈ Y };
iii) X is the domain of a partial recursive function;

Proof
i)⇒ii) Suppose X 6= ∅ is the domain of the partial recursive function f . Let

x0 ∈ X . Let g : N2 → N by

g(x, s) =

{
f(x) if T (e, x, s)
x0 otherwise

where T (e, x, s) is the Kleene T-predicate asserting Pe halts on input x by stage
s. Then g is total recursive and the range of X is equal to the range of g. If
σ : N→ N2 is a recursive bijection, then ĝ = g ◦ σ is the desired function.

ii)⇒iii) Let X be the range of f . Let Y = {(x, y) : f(x) = y}. Then Y is
recursive and X = {y : ∃x f(x) = y}.

iii)⇒v) Let Y ⊂ Nm+1. Let σ : N → Nm be a recursive bijection. Let
f : N → N, by f(n) = µx (σ(x), n) ∈ Y . f is partial recursive and X is the
domain of f .

iii)⇒iv) Let X be the domain of f . Let

g(x) =

{
x f(x) ↓
↑ otherwise.

Then g is partial recursive and the range of g is the domain of f .

We next fix an enumeration of the recursively enumerable sets.

Definition 8.3 Let We = {x : φe(x) ↓} = domφe. Then W0,W1,W2, . . . is an
enumeration of the recursively enumerable sets.

The Halting setH = {(e, x) : φe(x) ↓} is the domain of the universal function
Ψ. Thus H is recursively enumerable. Similarly K = {e : φe(e) ↓} is the domain
of e 7→ ψ(e, e) and hence recursively enumerable. Thus there are recursively
enumerable sets which are not recursive.
Recursively enumerable sets arise naturally in logic when we take the set of

logical consequences of a theory. For the moment this will be informal (since
we are talking about sets of sentences rather than natural numbers). They will
me made precise in §11 when we talk about coding formulas.

52

Suppose T is a recusive set of sentences. Then Cn(T) = {φ : T ` φ} is
recursively enumerable as Cn(T) = {φ : ∃p p is a proof of φ from T}. By ii)
Cn(T) is recursively enumerable.

Proposition 8.4 If A and B are recursively enumerable, then A∪B and A∩B
are recursively enumerable.

Proof We give intuitive arguments which can easily be made precise.
Suppose we have programs enumerating A and B. To enumerate A ∪B, we

enumerate x whenever we see x appear in either the enumeration of A or the
enumeration of B.
To enumerateA∩B, we enumerate x once we see x appear in the enumeration

of both A and B.

Proposition 8.5 Every recursive set is recursively enumerable.

Proof Let f be the characteristic function for A and let

g(x) =

{
1 f(x) = 1
↑ f(x) 6= 0.

Then A = domg.

Proposition 8.6 A is recursive if and only if A and ¬A are recursively enu-
merable.

Proof If A is recusive, then ¬A is recursive. Thus, by Proposition 8.5 both A
and ¬A are recursively enumerable.
If A and ¬A are recursively enumerable, then we can decide if x ∈ A as

follows: start enumerating A and ¬A. We will eventually find x in one of the
two lists. If x is enumerated into A, then output x. If x is enumerated into ¬A,
output no.

Corollary 8.7 ¬K and ¬H are not recursively enumerable.

Proof Otherwise K and H are recursive by 8.6.

Definition 8.8 A ≤m B (A is many-one reducible to B) if there is a total
recursive f : N→ N such that x ∈ A⇔ f(x) ∈ A.
If A ≤m B then B is at least as complicated as A. We can reduce problems

about A to probelms about B. We next show that the Halting Problem is the
most complicated recursively enumerable set.

Lemma 8.9 Suppose A ≤m B. If B is recursive, then so is A. Also if B is
recursively enumerable so is A.

Proof If B is recursive this is clear. Suppose B is recursively enumerable.
Suppose g is partial recursive and B = domg. Suppose f is total recursive and
n ∈ A iff f(n) ∈ B. Then A = {n : g(f(n)) ↓} a recursively enumerable set.

53

Lemma 8.10 If A is recursively enumerable, then A ≤m H.

Proof Suppose A is the domain of φe. Let f(n) = (e, n). Then

n ∈ A ⇔ φe(n) ↓
⇔ Ψ(e, n) ↓
⇔ f(e, n) ∈ H.

Lemma 8.11 If A is recursively enumerable A ≤m K.

Proof If suffices to show H ≤m K. There is a total recursive function g such
that for all e, x, y, φg(e,x)(y) = φe(x). Intuitively g is a function which on input
e and x outputs a program P , such that on any input y, P runs Pe on input x.
More formally let G(e, x, y) = Ψ(e, x). Apply the Parameterization Lemma

(to obtain a total recursive g(e, x) such that φ(g(e,x)(y) = G(e, x, y) = φe(x).
Then (e, x) ∈ H if and only if for all y, φg(e,x)(y) ↓ if and only if φg(e,x)(g(e, x)) ↓.
Thus (e, x) ∈ H if and only if g(e, x) ∈ K, so H ≤m K.
Thus A is recursively enumerable if and only if A ≤m H if and only if

A ≤m K.
Recall that Tot = {e : φe is total}. We will show that

Lemma 8.12 i) K ≤m Tot
ii) ¬K ≤m Tot
iii) Neither Tot nor ¬Tot is recursively enumerable.

Proof
i) Define a total recursive function f(x) such that for all e, φf(e)(y) = φe(e).

(The existence of such an f follows from the parameterization lemma.) Then
e ∈ K ⇔ f(e) ∈ Tot.

ii) Define a total recursive function f(x) such that

φf(e)(s) =

{
1 φe(e) has not halted by stage s
↑ otherwise.

Let

G(e, s) =

{
1 ¬T (e, e, s)
↑ otherwise

and apply the paramterization lemma to obtain a total recursive g such that
φg(e)(s) = G(e, s). Then e 6∈ K if and only if there is an s such that T (e, e, s) if
and only if there is an s such that φg(e)(s) ↑. Thus e ∈ ¬K ⇔ g(e) ∈ K.

iii) If Tot were recursively enumerable, then since ¬K ≤m Tot, ¬K would
be recursively enumerable and K would be recursive.
Note that if x ∈ A ⇔ f(x) ∈ B, then x 6∈ A ⇔ f(x) 6∈ B. So A ≤m B ⇔

¬A ≤m ¬B. Thus since K ≤m Tot, ¬K ≤m ¬Tot. If ¬Tot were recursively
enumerable then ¬K would be recursively enumerable, a contradiction.

54

Definition 8.13 We say that X ⊂ Nm is Σ1 if and only if there is a recursive
Y ⊂ Nm+n such that

X = {x ∈ Nm : ∃y (x, y) ∈ Y }.

We say that X ⊂ Nm is Πn if and only if ¬X is Σn. X is Σn+1 if and only
if there is a Πn set Y ⊂ Nm+k such that

X = {x : ∃y (x, y) ∈ Y }.

We say that X is ∆n if and only if X is Σn and X is Πn.
By 8.2 the Σ1 sets are exactly the recursively enumerable sets. Note that

the ∆1 sets are the recursive sets. It is easy to see that Σn ∪ Πn ⊆ ∆n+1.

Definition 8.14 We say that X is arithmetic if X ∈ ∪nΣn.

Proposition 8.15 i) If A0 and A1 are Σn (Πn), then A0∩A1 and A0∪A1 are
Σn (Πn).

ii) If A ⊂ Nm+1 is Σn, then {x : ∃y (x, y) ∈ A} is Σn.
iii) If A ⊂ Nm+1 is Πn, then {x : ∀y (x, y) ∈ A} is Πn.
iv) If A ⊂ Nm+1 is Σn and f : Nm → N is total recursive, then {x : ∀y <

f(x) (x, y) ∈ A} is Σn.
v) If A ⊂ Nm+1 is Πn and f : Nm → N is total recursive, then {x : ∃y <

f(x) (x, y) ∈ A} is Πn.
vi) If A is Σn (Πn) and B ≤m A, then B is Σn (Πn).

Proof
i) Let Ai = {x : ∃y (x, y) ∈ Bi} where Bi is Πn−1 (or recursive if n = 1.

Then A0 ∪ A1 = {x : ∃y ((x, y) ∈ B0 ∪ B1)}. By induction B0 ∪ B1 is Πn−1.
Thus A0 ∪ A1 is Σn.
Similarly A0 ∩ A1 = {x : ∃y0∃y1 ((x, y0) ∈ B0 ∧ (x, y1 ∈ B1}.

ii) and iii) are similar.

iv) Suppose A = {(x, y) : ∃z(x, y, z) ∈ B}. Then ∀y < f(x)∃z(x, y, z) ∈ B
iff and only if ∃σ(x, y, σ) ∈ B∗, where we think of σ as coding a finite sequence
(z0, . . . , zf(x)−1) and B

∗ asserts that forall y < f(x), (x, y, zy) ∈ B. Since Πn−1
sets are closed under ∀y, B∗ is Πn−1. Thus our set is Σn.

v) is similar

vi) Suppose A is Σn. Let f be a total recursive function such that

x ∈ B ⇔ f(x) ∈ A.

Let
Y = {(x, y) : y ∈ A ∧ f(x) = y}.

Then Y ∈ Σn and B = {x : ∃y (x, y) ∈ A} is Σn.

55

Examples

Below let W s
e = {x : φe(x) ↓ by stage s}. Clearly W

s
e is recursive.

• Tot = {e : φe is total} is Π2 as

e ∈ Tot⇔ ∀n∃sx ∈W s
e .

• Fin = {e :We is finite} is Σ2 as

e ∈ Fin⇔ ∃n∀y∀s (y < x ∨ y 6∈ W s
e).

• {(a, b, c, d, e) : ∃x, y∀z az3 − bxz = cx2 − dxy2 + ey3} is Σ2.

• {e : We is recursive} is Σ3 as We is recursive if and only there is an i such
that ¬We =Wi. Thus We is recursive iff and only if

∃i∀x ((x ∈ We ∨ x ∈ Wi) ∧ (x 6∈ We ∨ x 6∈ Wi)).

This is equivalent to

∃i∀x(∃s(x ∈ W s
e ∨ x ∈W

s
i)︸ ︷︷ ︸

Σ1

∧∀s(x 6∈W s
e ∨ x 6∈ W

s
i)︸ ︷︷ ︸

Π1︸ ︷︷ ︸
Π2

).

Thus {e :We is recursive} is Σ3.

Complete Sets

Definition 8.16 For Γ be Σn or Πn. We say that X is Γ-complete if X ∈ Γ
and for all Y ∈ Γ, Y ≤m X .
By 8.11 K and H are Σ1-complete.

Proposition 8.17 Tot is Π2-complete.

Proof Let X be Π2. Then there is a recurisve R(x, y, z) such that

x ∈ X ⇔ ∀y∃z R(x, y, z).

Let f(x, y) =

{
1 ∃z R(x, y, z)
↑ otherwise

. Clearly f as computable as on input x, y

we search for a z such that R(x, y, z). If there is one we will evenutally find it
and halt. If not we will search forever.
By the parameterization theorem there is a recursive function k(x) such that

φk(x)(y) = f(x, y).

But then x ∈ X if and only if φk(x) is total.

56

Proposition 8.18 Fin is Σ2-complete.

Proof
Let X ∈ Σ2. Suppose x ∈ X if and only if ∃y∀z R(x, y, z) where R is

recursive.
Let

f(x, y) =

{
1 ∀w ≤ y∃z ¬R(x,w, z)
↑ otherwise.

By the parameterization theorem there is a total recursive g such that φg(x)(y) =
f(x, y).
Then Wg(x) = {y : ∀w < y∃z ¬R(x,w, z)}. Thus x ∈ X if and only if

g(x) ∈ Fin.

Definition 8.19 Let U ⊂ N2. For e ∈ N, let Ue = {x : (e, x) ∈ U}. We
say that U is Γ-universal if U ∈ Γ and for any X ∈ Γ, there is an e such that
X = Ue.

Clearly every Γ-universal set is Γ-complete

Lemma 8.20 For Γ = Σn or Πn, there is UΓ which is Γ-universal.

Proof Let UΣ1
= {(e, n) : n ∈ We} = {(e, n) : Ψ(e, n) ↓} is Σ1 and clealy

universal.
If UΣn

is universal for Σn then ¬UΣn
is universal for Πn.

Let UΠn
be universal Πn. Let π : N2 → N be a recursive bijection. Then

{(e, n) : ∃y(e, π(x, y)) ∈ UΠn
}.

is universal Σn+1.

Proposition 8.21 The universal Σn set is not Πn.

Proof Let U be the universal Σn set. Let V = {e : (e, e) 6∈ U}. If U were Πn
then V would be Σn. In that case there would be an e0 such that V = Ue0 . But
then

e0 ∈ V ⇔ (e0, e0) 6∈ U ⇔ e0 6∈ Ue0 ⇔ e0 6∈ V.

Thus Σn ⊃ ∆n and Πn ⊃ ∆n. This gives the following picture of the
arithemtic hierarchy.

©
©
©
©
©
©
©
©
©
©
©©H

H
H
H
H
H
H
H
H
H
HH

©
©
©
©
©
©
©
©
©
©
©©H

H
H
H
H
H
H
H
H
H
HH

...

∆1

Σ1 Π1

∆2

Σ2 Π2

57

9 Further Topics in Computability Theory

In this section we will take a quick look at several other important ideas in
computability theory.

Rice’s Theorem

Definition 9.1 We say that X ⊂ N is an index set if whenever φi = φj ,
i ∈ X ⇔ j ∈ X .

Tot is an index set. We will show below that K is not an index set.

Theorem 9.2 (Rice’s Theorem) If X is an index set then either X = ∅,
X = N, K ≤m X or ¬K ≤m X. In particular the only recursive index sets are
N and ∅.

Proof Suppose X 6= ∅ and X 6= N. Choose e0 such that for all x, φe0 (x) ↑.
case 1 e0 6∈ X .
Let e1 ∈ X . Then φe1 6= φe0 . There is a total recursive f such that forall

x, y,

φf(x)(y) =

{
φe1(y) x ∈ K
↑ x 6∈ K.

Let G(x, y) be the partial function computed as follows, enumerate K until
we see that x ∈ K (if x 6∈ K, this search will never terminate), once we see that
x ∈ K start computing φe1(y). Apply the Parameterization Lemma to G to get
g such that φg(x)(y) = G(x, y).
If x ∈ K, then φg(x) = φe1 while if x 6∈ K, then φg(x) = φe0 , the everywhere

undefined function. Since X is an index set if φg(x) = φei
, then g(x) ∈ X ⇔

ei ∈ X . Thus x ∈ K ⇔ g(x) ∈ X .

case 2: e0 6∈ X .
Use the fact that ¬X is an index set. By case 1, K ≤m ¬X . Thus ¬K ≤m

X .

The Recursion Theorem

Suppose you are given the task of writing a computer program Q which we will
call a “modifier”. The program Q will compute a total recursive function f .
The goal of Q is to insure that for φe 6= φf(e) for any input e. Intuitively Q
takes as input a program Pe and outputs a modified program Pf(e) and Q’s
goal is to insure that these programs do not compute the same partial recursive
function. Is there such a program Q?
One at first might think this is easy as Q could do something like output

Pf(e) where we first run Pe and then add one to the output. This almost works.
If there is any x such that Pe halts on input x, then φe(x) 6= φf(e)(x). However
suppose we choose e an index for the everywhere divergent function. Then Pf(e)
is also the everywhere divergent function. Perhaps you would expect that if one

58

were a little more clever one could avoid this problem. The recursion theorem
says that this is not the case.

Theorem 9.3 (Kleene’s Recursion Theorem) Suppose f : N → N is a to-
tal recurstive function. There is a number e such that φe = φf(e). In particular
there is an e such We =Wf(e).

Proof Consider the partial recursive function

F (x, y) =

{
φφx(x)(y) if φx(x) ↓
↑ otherwise.

By the parameterization theorem there is a total recursive function d such that

φd(x)(y) = F (x, y).

Choose n such that φn = f ◦ d. Let e = d(n). Since d and f are total, φn is
total. Thus φn(n) converges and φd(n) = φφn(n). Hence

φn = φd(n) = φφn(n) = φf(d(n)) = φf(e)

as desired.
The following is typical of the many odd corollaries of the recursion theorem.

Corollary 9.4 There is an e such that We = {e}.

Proof By the Parameterization Lemma there is a total recursive function f
such that

φf(x)(y) =

{
1 y = x
↑ otherwise.

Thus Wf(x) = {x} for all x. By the Recursion Theorem there is an e such that

We =Wf(e) = {e}.

Thus there is a program Pe which on input x checks “Is x a code for my own
program?” and halts if and only if it is. Such a program can be written in any
programming language.
We can now answer a question raised above.

Corollary 9.5 K is not an index set.

Proof Suppose e as in Corollary 9.4. Since We = {e}, e ∈ K. On the other
hand if φi = φe and i 6= e, then φi(i) ↑. Thus i 6∈ K.

59

Recursively Inseparable r.e. Sets

Definition 9.6 Suppose A and B are recursively enumerable and A ∩ B = ∅.
We say that A and B are recursively inseparable if there is no recursive set C
such that A ⊆ C and B ∩ C = ∅.

Theorem 9.7 There is a pair of recursively inseparable recursively enumerable
sets.

Proof Let A = {e : φe(e) = 0} and let B = {e : φe(e) = 1}. Suppose C is
recursive, A ⊆ C and C ∩ B = ∅. Let φn be the characteristic function of C.
Then

n ∈ C ⇒ φn(n) = 1⇒ n ∈ B ⇒ n 6∈ C.

On the other hand

n 6∈ C ⇒ φn(n) = 0⇒ n ∈ A⇒ n ∈ C.

Thus we have a contradiction.

Simple Sets

We will give an example of a non-recursive recursively enumerable set which is
not Σ1-complete.

Definition 9.8 We say that a recursively enumerable set A is simple if
i) ¬A is infinite but
ii) ¬A contains no infinite recusively enumerable set. Thus A is simple if and

only if ¬A is infinite and for any e if We is infinite, then A ∩We is nonempty.

Theorem 9.9 (Post) There is a simple recusively enumerable set.

Proof Let B = {(e, s, x) : x ∈ W s
e ∧ x > 2e}. Let f be a partial recursive

function
f(e, s) = µx (e, s, x) ∈ B

ie. f(e, s) is the least x such that (e, s, x) ∈ b and f(e, s) ↑ if no such x exists.
Note that if f(e, s) ↓ and t > s, then f(e, s) = f(e, t). We call this common
value me.
Let A be the range of f . Then A is recursively enumerable and A = {me :

f(e, s) ↓ for some s}. If n ∈ A and n ≤ N , then n = me for some e < N/2.
Thus ¬A is infinite.
Suppose We is infinite. There is x ∈ We such that x > 2e, thus f(e, s) ↓

for large enough s. But f(e, s) ∈ We ∩ A. Thus We 6⊆ A. So ¬A contains no
infinite recursively enumerable sets.

Definition 9.10 A recursively enumerable set A is creative if and only if there
is a total recursive F such that F (e) ∈ A if and only if F (e) ∈We for all e.

60

Proposition 9.11 i) If A is creative, then A is not recursive.
ii) K is creative.
iii) Any complete recursively enumerable set is creative.

Proof
i) If We = ¬A, then

F (e) ∈ A⇔ F (e) ∈ We ⇔ F (e) 6∈ A

a contradiction.

ii) Let F (e) = e. Then F (e) ∈ K if and only if e ∈We.

iii) Since K ≤m A, there is a total recursive f such that e ∈ K if and only
if f(e) ∈ A. By the Parameterization Lemma, there is a total recursive g such
that

φg(e)(x) = φe(f(x))

for all e and x. Then

f(g(e)) ∈ A ⇔ g(e) ∈ K

⇔ φg(e)(g(e)) ↓

⇔ φe(f(g(e)) ↓

⇔ f(g(e)) ∈We.

Thus F = f ◦ g shows that A is creative.

Proposition 9.12 If A is creative, then ¬A contains an infinite recursively
enumerable set.

Proof Suppose F is a total recursive function such that F (e) ∈ A if and only
if F (e) ∈We. There is a total recursive function f such that

Wf(n) =Wn ∪ {F (n)}

for all n.
Suppose We ⊆ ¬A. Since F (e) ∈ We if and only if F (e) ∈ A, F (e) 6∈ We

and Wf(e) ⊆ ¬A. Thus We ⊂Wf(e) ⊆ ¬A.
Choose e0 such that We0 = ∅. Let

h(0) = e0

h(n+ 1) = f(hn)

Then
Wh0

⊂Wh1
⊂Wh2

⊂ . . .¬A

and
∞⋃

n=0

Wh(n) = {x : ∃n x ∈Wh(n)}

is an infinite recursively enumerable subset of ¬A.

Corollary 9.13 If A is simple, then A is not complete.

Proof A is not creative and, hence, not complete.

61

Kolmogorov Randomness

For x ∈ N let |x| be the length of the binary expansion of x. Then |x| =
dlog2(x+ 1)e.
We say that 〈n,m〉 is a description of x if φn(m) = x. We say that k codes

a description of x if π(n,m) = k where π(n,m) = 2n(2m+ 1)− 1 is our usual
pairing function π : N2 → N.

Definition 9.14 The Kolmogorov complexity of x is

K(x) = min{|k| : k codes a description of x}.

We say that x is random if K(x) ≥ |x|.

Proposition 9.15 {x : x is not random } is recursively enumerable.

Proof x is not random if and only if

∃n,m (|π(n,m)| < |x| ∧ φn(m) = 1}.

Proposition 9.16 There are random x.

Proof The key observation is that

|{x : |x| ≤M} = 2M

for any M . Thus for any M ∈ N, there are at most 2M−1 descriptions with
codes k where |k| < M . Thus

{x : |x| ≤M and K(x) < M}| ≤ 2M−1

and at least half the numbers of length at most M are random!

Proposition 9.17 {x : x is not random} is simple.

Proof Suppose A is an infinite recursively enumerable set of random numbers.
Let f : N→ A be the function f(m) = first x enumerated into A with |x| ≥ m.
Let f = φn. Pick m > 2n.

m ≤ |f(m)| ≤ K(f(m)) ≤ |π(n,m)| ≤ |2n(2m+ 1)| ≈ n+ |m| < 2|m|

a contradiction.

62

