Math 502 Metamathematics I

Problem Set 1

Due: Friday September 12

- 1) Suppose \mathcal{M} is an \mathcal{L} -structure, $\sigma: V \to M$ is an assignment, ϕ is an \mathcal{L} -formula and $M \models_{\sigma} \exists v_1 \forall v_2 \phi$. Prove that $\mathcal{M} \models_{\sigma} \forall v_2 \exists v_1 \phi$.
- 2)¹ a) Suppose that ϕ_1, \ldots, ϕ_n are \mathcal{L} -formulas and ψ is a Boolean combination of ϕ_1, \ldots, ϕ_n (i.e., ψ is built from ϕ_1, \ldots, ϕ_n using only \wedge, \vee and \neg). Prove there is $S \subseteq \mathcal{P}(\{1, \ldots, n\})$ such that

$$\models \psi \Leftrightarrow \bigvee_{X \in S} \left(\bigwedge_{i \in X} \phi_i \wedge \bigwedge_{i \notin X} \neg \phi_i \right).$$

b) Show that every formula is equivalent to one of the form

$$Q_1v_1\dots Q_mv_m \psi$$
,

where ψ is quantifier-free and each Q_i is either \forall or \exists .

- 3) Let $\mathcal{L} = \{\cdot, e\}$ be the language of groups. Show that there is a sentence ϕ such that $\mathcal{M} \models \phi$ if and only if $\mathcal{M} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. [Note: More generally, if \mathcal{L} is any finite language and \mathcal{M} is a finite \mathcal{L} -structure. There is an \mathcal{L} -sentence ϕ such that $\mathcal{N} \models \phi$ if and only if $\mathcal{N} \cong \mathcal{M}$.]
- 4) Let \mathcal{L} be any countable language. Show that for any infinite cardinal κ there are at most 2^{κ} nonisomorphic \mathcal{L} -structures of cardinality κ .

$$\bigvee_{\phi \in S} \phi \text{ and } \bigwedge_{\phi \in S} \phi$$

are the formulas $\phi_1 \vee \ldots \phi_m$ and $\phi_1 \wedge \ldots \wedge \phi_m$ respectively.

¹Some notation:

[•] $\mathcal{P}(A)$ is the set of all subsets of A.

[•] If S is the finite set $\{\phi_1, \ldots, \phi_m\}$ then