Math 502 Metamathematics I Problem Set 2

Due: Friday September 26

Problems marker with a † are more difficult and optional.

1) Let T and T' be \mathcal{L} -theories with $T' \subseteq T$. We say that T' axiomatizes T if every model of T' is a model of T. Suppose T' axiomatizes T. Prove that $T \models \phi$ if and only if $T' \models \phi$ for all \mathcal{L} -sentences ϕ .

2) Let $\mathcal{L} = \{+, 0\}$. Prove that $\operatorname{Th}(\mathbb{Z}) \neq \operatorname{Th}(\mathbb{Z} \oplus \mathbb{Z})$.

3) Let $\mathcal{L} = \{R\}$. Let T_0 be the theory: $\forall x \neg R(x, x) \quad (R \text{ is irreflexive})$ $\forall x \forall y \ (R(x, y) \rightarrow R(y, x)) \quad (R \text{ is symmetric})$

 T_0 is the theory of graphs. Show how to axiomatize the following classes:

- a) complete graphs;
- b) acyclic graphs;

c) graphs of valence 2 (i.e., graphs where every element has an edge to exactly two other elements);

 $d)^{\dagger}$ bipartite graphs.

4) a) Let \mathcal{L} be the language $\{+, 0\}$ and consider the structure \mathcal{R} with universe \mathbb{R} where + is interpreted as the usual addition and 0 as zero. Show that there is no formula $\phi(v, w)$ such that $\mathcal{R} \models \phi(a, b)$ if and only if a < b for all $a, b \in \mathbb{R}$. [Hint: Find a and b and an automorphism F of \mathbb{R} such that a < b but F(a) > F(b).]

b)[†] Let \mathcal{L} be the language of rings $\{+, \cdot, 0, 1\}$ and let \mathcal{R} be **R** with the usual interpretation. Find a formula $\phi(v, w)$ such that a < b iff $\mathcal{R} \models \phi(a, b)$.

5) If ϕ is a sentence, the *spectrum* of ϕ is the set of all natural numbers n such that there is a model of ϕ with exactly n elements.

a) Let $\mathcal{L} = \{E\}$ where E is a binary relation. Write down a sentence ϕ asserting that E is an equivalence relation and every equivalence class has exactly three elements. Show that the spectrum of ϕ is $\{n > 0: 3 \text{ divides } n\}$.

b) Let $\mathcal{L} = \{P, Q, f\}$ where P and Q are unary predicates and f is a binary function. Let ϕ be the conjuction of:

 $\exists x \exists y \ x \neq y \land P(x) \land P(y)$ $\exists x \exists y \ x \neq y \land Q(x) \land Q(y)$ $\forall z \exists x \exists y \ P(x) \land Q(y) \land f(x, y) = z$ $\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ [(P(x_1) \land P(x_2) \land Q(y_1) \land Q(y_2) \land f(x_1, y_1) = f(x_2, y_2)) \rightarrow (x_1 = x_2 \land y_1 = y_2)]$

Show that the spectrum of $\phi = \{n > 3 : n \text{ is not prime}\}.^1$

c) Find a sentence with the spectrum $\{n > 0 : n \text{ is a square }\}$.

d) Find a sentence with the spectrum $\{p^n : p \text{ prime } n > 0\}$.

e)^{††} Find a sentence with spectrum $\{p : p \text{ is prime}\}$.

f)^{†††} Prove that $X \subseteq \mathcal{N} \setminus \{0\}$ is a spectrum if and only if X is in recognizable in nondeterministic exponential time.²

¹Another sentence with the same spectrum is the sentence in the language of rings asserting that we have a commutative ring **with** zero divisors

 $^{^{2}}$ The question about whether the complement of a spectrum is a spectrum is an old open question. By this result it is equivalent to the question about whether nondeterministic exponential time is co-nondeterministic exponential time.