Math 502 Metamathematics I Problem Set 6

Due: Wednesday December 10:

Do 4 of the following problems.

1) Fill in the details of the proof of Church's Theorem. We need to show that θ_n^P is valid if and only if P halts on input n.

2)[†] Suppose $f : \mathbb{N} \to \mathbb{N}$ is RM-computable. Prove that there is a register machine program P computing f using only 3 registers. [Hint: We will have to use these registers to code a simulation of the computation of P.]

3) a) (Reduction) Suppose A and B are recursively enumerable. Show that are are recursively enumerable sets $A_0 \subseteq A$ and $B_0 \subseteq B$ such that $A_0 \cap B_0 = \emptyset$ and $A_0 \cup B_0 = A \cup B$.

b) (Separation) Suppose A and B are Π_1 and $A \cap B = \emptyset$. Show that there is a recursive C such that $A \subseteq C$ and $B \cap C = \emptyset$. (HINT: Apply a) to $\mathbb{N} \setminus A$ and $\mathbb{N} \setminus B$.)

4) a) Show that {e : W_e ≠ Ø} is Σ₁-complete.
b) Let Cof = {e : N \ W_e is finite}. Show that Cof is Σ₃.
c)[†] Show that Cof is Σ₃-complete.

5) Suppose $X \subset \mathbb{N}^2$ is Δ_n . Show that there is a Δ_n set $Y \subseteq \mathbb{N}$ such that for all $n, Y \neq X_n$ (where $X_n = \{m : (n, m) \in X\}$). Thus there is no universal Δ_n set. (Hint: Consider $\{n : (n, n) \notin X\}$).