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Appendix A
Set Theory

In this Appendix, we will survey some of the elementary results from set
theory that we use in the text. We give very few proofs and refer the reader
to set theory texts such as [26], [47], or [57] for further details.
We will work in ZFC, Zermelo–Fraenkel set theory with the Axiom of

Choice. The Axiom of Choice asserts that if (Ai : i ∈ I) is a family of
nonempty sets, then there is a function f with domain I such that f(i) ∈ Ai

for all i ∈ I .

Zorn’s Lemma and Well-Orderings

If X is a set and < is a binary relation on X , we say that (X,<) is a partial
order if (X,<) |= ∀x ¬(x < x) and (X,<) |= ∀x∀y∀z ((x < y ∧ y < z) →
x < z).
We say that (X,<) is a linear order if in addition
(X,<) |= ∀x∀y (x < y ∨ x = y ∨ y < x).

If (X,<) is a partial order, then we say that C ⊆ X is a chain in X if C
is linearly ordered by <.

Theorem A.1 (Zorn’s Lemma) If (X,<) is a partial order such that
for every chain C ⊆ X there is x ∈ X such that c ≤ x for all c ∈ C, then
there is y ∈ X such that there is no z ∈ X with z > x. In other words, if
every chain has an upper bound, then there is a maximal element of X.
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We give one application of Zorn’s Lemma. We say that a linear order
(A,<) is a well-order if for any nonempty C ⊆ A, there is a ∈ C such that
a ≤ b for all b ∈ C. The following characterization is also useful.

Lemma A.2 (A,<) is a well-order if and only if there is no infinite de-
scending chain a0 > a1 > a2 > . . . in A.

Theorem A.3 (Well-Ordering Principle) If A is any set, then there
is a well-ordering of A.

Proof Let X = {(Y,R) : Y ⊆ A and R is a well-ordering of A}. We
say that (Y,R) < (Y1, R1) if Y ⊂ Y1, R ⊂ R1, and if a ∈ Y1 \ Y and
b ∈ Y ; then bRa (i.e. every new element is greater than every old element).
Suppose that C ⊂ X is a chain. Let

Ŷ =
⋃

(Y,R)∈C

Y and R̂ =
⋃

(Y,R)∈C

R.

We claim that R̂ is a well-ordering of Ŷ . We first show that R̂ is a linear
order. Clearly, ¬(aR̂a) for all a ∈ Ŷ . If a1, a2, a3 ∈ Ŷ such that a1R̂a2

and a2R̂a3, then we can find (Yi, Ri) ∈ C such that ai ∈ Yi for i = 1, 2, 3.
Because C is a chain, there is j such that (Yi, Ri) ≤ (Yj , Rj) for each

i = 1, 2, 3. Because (Yi, Ri) is transitive, a1Rja3 and a1R̂a3.

If a0 > a1 > . . . is a decreasing chain in R̂, we can find (Y,R) ∈ C such
that a0 ∈ Y . Because of the way we order X , all of the ai ∈ Y . In this case,
R would not be a well-order, a contradiction. Thus (Ŷ , R̂) ∈ X . Clearly,

(Ŷ , R̂) ≥ (Y,R) for all (Y,R) ∈ C. Thus, every chain has an upper bound.
By Zorn’s Lemma, there is (Y,R) ∈ X maximal. We claim that Y = A.

Suppose that a ∈ A \ Y . Let Y ′ = A ∪ {a}, and let R′ = R ∪ (Y × {a})
(i.e., we order Y ′ by making a the largest element). Then, R′ is a well-
ordering and we have contradicted the maximality of (Y,R). Thus ,R is a
well-ordering of A.

Zorn’s Lemma and the Well-Ordering Principle are equivalent forms of
the Axiom of Choice.

Ordinals

Definition A.4 We say that X is transitive if, whenever x ∈ X and y ∈ x,
then y ∈ X . We say that a set X is an ordinal if X is transitive and
well-ordered by ∈. Let On be the class of all ordinals.

Lemma A.5 i) On is transitive and well-ordered by ∈.
ii) If α and β are ordinals, then the orderings (α,∈) and (β,∈) are

isomorphic if and only if α = β.
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It follows from i) that On is not a set. If On were a set, then On is itself
an ordinal and On ∈ On. This gives rise to an infinite descending chain
contradicting the fact that On is well-ordered by ∈.
Because ∈ is an ordering of On we often write α < β instead of α ∈ β.

Note that α = {β ∈ On : β < α}.

Every well-ordering is isomorphic to an ordinal.

Proposition A.6 If (X,<) is a well-ordering, then there is an ordinal
α such that (X,<) is isomorphic to (α,∈). We call α the order type of
(X,<).

Lemma A.7 i) ∅ is an ordinal and if α ∈ On, and α 6= ∅ then ∅ ∈ α.
Thus, ∅ is the least ordinal.
ii) If α is an ordinal, then suc(α) = α∪{α} is an ordinal, and if β ∈ On,

then β ≤ α or suc(α) ≤ β.
iii) If C is a set of ordinals, then δ =

⋃
α∈C α is an ordinal, and δ is the

least upper bound of the ordinals in C.

Lemma A.7 gives us a description of the first ordinals. By i), 0 = ∅ is
the least ordinal. The next ordinals are 1 = {∅}, 2 = {∅, {∅}}, . . .. In
general, we let n + 1 = suc(n). Note that n = {0, 1, . . . , n− 1}. Thus, the
natural numbers are an initial segment of the ordinals. The next ordinal is
ω = {0, 1, 2, 3, . . .}.
If α ∈ On, we say that α is a successor ordinal if α = suc(β) for some

ordinal β. If α 6= 0 and α is not a successor ordinal then we can say α is
a limit ordinal. The next proposition is the main tool for proving things
about ordinals.

Theorem A.8 (Transfinite Induction) Suppose that C is a subclass of
the ordinals such that
i) 0 ∈ C,
ii) if α ∈ C, then suc(α) ∈ C, and
iii) if α is a limit ordinal and β ∈ C for all β < α, then α ∈ C.

Then C = On.

We can define addition, multiplication, and exponentiation of ordinals. If
α, β ∈ On, let X be the well-order obtained by putting a copy of β after a
copy of α. More precisely, X = ({0}×α)∪ ({1}×β) with the lexicographic
order. Then α+β is the order type of X . Let Y be the well-order obtained
by taking the lexicographic order on β × α. Then α · β is the order type of
β × α. We define αβ by transfinite recursion as follows:
i) α0 = 1;
ii) αsuc(β) = αβα;
iii) if β is a limit ordinal, then αβ = sup{αγ : γ < β} =

⋃
γ<β α

γ .
Addition and multiplication are not commutative, but we do have the

following properties.



318 Appendix A. Set Theory

Lemma A.9 i) suc(α) = α+ 1.
ii) suc(α+ β) = α+ suc(β).
iii) α+ (β + γ) = (α+ β) + γ.
iv) α(βγ) = (αβ)γ.
v) α(β + γ) = αβ + αγ.
vi) If β = supγ∈C γ, then α+ β = supγ∈C α+ γ.

We can start building the ordinals above ω:
ω, ω+1, ω+2, . . ., sup{ω+n : n < ω} = ω+ω = ω2, ω2+1, ω2+2, . . .,

sup{ω2 + n : n < ω} = ω2 + ω = ω3, . . . , ω3, . . . , ω4, . . . , ω5 . . ., sup{ωn :
n < ω} = ω × ω = ω2, ω2 + 1, . . . , ω3, . . . , ω4, . . ., sup{ωn : n < ω} = ωω.

Continuing this way: . . . , ωω+1, . . . ,ωω+2, . . . , ωω2, . . . , ωω3, . . . , ωω
2

, . . . ,

ωω
n

, . . . , ωω
ω

, . . . , ωω
ωω

, . . .

This is the limit of the ordinals we can easily describe. The next ordinal
is

ε0 = sup{ω, ωω, ωω
ω

, . . .}.

We could now continue as before. Indeed, all of the ordinals we have de-
scribed so far are still quite small.

Cardinals

We need a method of comparing sizes of sets. Let A be any set. By the Well-
Ordering Principle, there is a well-ordering < of A and, by Proposition A.6,
there is an ordinal α such that (A,<) is isomorphic to α. We let |A| be the
least ordinal α such that there is a well-ordering of A isomorphic to α.

Proposition A.10 The following are equivalent.
i) |A| = |B|.
ii) There is a bijection f : A→ B.
iii) There are one-to-one functions f : A→ B and g : B → A.

We say that A is countable if |A| ≤ ω. All of the ordinals α ≤ ε0 that we
described above are countable. Let ω1 = {α ∈ On : α is countable}. It is
easy to see that ω1 is transitive and well-ordered by ∈. If ω1 is countable,
then ω1 ∈ ω1 and we get a contradiction. Thus, ω1 is the first uncountable
ordinal. Note that |ω1| = ω1.
We say that an ordinal α is a cardinal if |α| = α. We recursively define

ωα for α ∈ On as follows:
ω0 = ω;
ωα+1 = {δ ∈ On : |δ| = ωα};
if α is a limit ordinal, then ωα = supβ<α ωβ .

Proposition A.11 i) Each ωα is a cardinal and ωα < ωβ if α < β.

ii) If κ is a cardinal, then either κ < ω or κ = ωα for some α ∈ On.
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We also use the notation ℵα = ωα. When we are thinking of it as an
ordinal, we use ωα and when we are thinking of it as a cardinal, we use ℵα.
If κ is a cardinal, there is a least cardinal greater than κ, which we call

κ+. We say that κ is a successor cardinal if κ = λ+ for some λ, otherwise (if
κ is nonzero), we say that κ is a limit cardinal. Note that infinite successor
cardinals are limit ordinals.
For any limit ordinal α ≥ ω, the cofinality of α is the least cardinal λ

such that there is a function f : λ → α and the image of f is unbounded
in α. We let cof(α) denote the cofinality of α.
For example, cof(ω) = ℵ0 because a finite function cannot be unbounded

in ω. On the other hand, cof(ωω) = ω because the function n 7→ ωn has
unbounded image.
If κ ≥ ℵ0 is a cardinal, we say that κ is regular if cof(κ) = κ; otherwise,

we say that κ is singular.

Proposition A.12 If κ ≥ ℵ0 is a cardinal, then κ+ is regular.

ℵ0 is a regular limit cardinal. It may be the only cardinal with both
properties. We say that κ > ℵ0 is inaccessible if κ is a regular limit cardinal.
Although we cannot prove that inaccessible cardinals exist, it seems likely
that we also cannot prove that they do not exist. Inaccessible cardinals are
quite large.

Proposition A.13 If κ > ℵ0 is inaccessible, then κ = ℵκ.

Proof An induction shows that ωα ≥ α for all α. If κ = ℵα where α < κ,
then β 7→ ωβ is an unbounded map from α into κ, a contradiction.

Cardinal Arithmetic

We define addition and multiplication of cardinals. If |X | = κ and |Y | = λ,
then κ+ λ = |({0}×X) ∪ ({1}× Y )| and κλ = |X × Y |. These operations
are commutative but not very interesting.

Lemma A.14 Let κ and λ be cardinals. If κ and λ are both finite, then
these operations agree with the usual arithmetic operations. If either κ or
λ is infinite, then

κ+ λ = κλ = max{κ, λ}.

Corollary A.15 i) If |I | = κ and |Ai| ≤ κ for all i ∈ I, then |
⋃
Ai| ≤ κ.

ii) If κ is regular, |I | < κ, and |Ai| < κ for all i ∈ I, then |
⋃
Ai| < κ.

iii) Let κ be an infinite cardinal. Let X be a set and F a set of functions
f : Xnf → X. Suppose that |F| ≤ κ and A ⊆ X with |A| ≤ κ. Let cl(A)
be the smallest subset of X containing A closed under the functions in F .
Then |cl(A)| ≤ κ.
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Exponentiation is much more interesting. If A and B are sets, then AB

is the set of functions from A to B and |A||B| = |AB |.

Lemma A.16 Let κ, λ, and µ be cardinals.
i) (κλ)µ = κλµ.

ii) If λ ≥ ℵ0 and 2 ≤ κ < λ, then 2λ = κλ = λλ.
iii) If κ is regular and λ < κ, then κλ = sup{κ, µλ : µ < κ}.

Proof iii) If f : λ → κ, then, because κ is regular, there is α < κ such
that f : λ→ α. Thus κλ =

⋃
α<κ α

λ. The right-hand side is the union of κ

sets each of size µλ for some µ < κ.

We say that an inaccessible cardinal κ is strongly inaccessible if 2λ < κ

for all λ < κ.

Corollary A.17 If κ is strongly inaccessible and λ < κ, then κλ = κ.

We know by Cantor that 2κ > κ for all cardinals κ. The next theorem is
a slight generalization.

Proposition A.18 (König’s Theorem) If κ ≥ ℵ0, then κcof(κ) > κ.

This gives us Cantor’s theorem because 2κ = κκ > κ but also gives us, for
example, that ℵℵ0

ω > ℵω.
ZFC is too weak to answer basic questions about cardinal exponentiation.

The most interesting is the Continuum Hypothesis.

Continuum Hypothesis (CH) 2ℵ0 = ℵ1.

Generalized Continuum Hypothesis (GCH) 2ℵα = ℵα+1.

The Continuum Hypothesis is unprovable in ZFC, but GCH is consistent
with ZFC.1 Assuming the Generalized Continuum Hypothesis, we get a
complete picture of cardinal exponentiation.

Proposition A.19 Assume the Generalized Continuum Hypothesis. Let
κ, λ ≥ 2 with at least one infinite.
i) If λ ≤ κ, then λκ = κ+.
ii) If λ < cof(κ), then κλ = κ.
iii) If cof(κ) ≤ λ < κ, then κλ = κ+.

Finite Branching Trees

Definition A.20 A finite branching tree is a partial order (T,<) such
that:
i) there is r ∈ T such that r ≤ x for all x ∈ T ;
ii) if x ∈ T , then {y : y < x} is finite and linearly ordered by <;

1Provided ZFC itself is consistent.
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iii) if x ∈ T , then there is a finite (possibly empty) set {y1, . . . , ym} of
incomparable elements such that each yi > x and, if z > x, then z ≥ yi for
some i.

A path through T is a function f : ω → T such that f(n) < f(n+ 1) for
all n.

Lemma A.21 (König’s Lemma) If T is an infinite finite branching
tree, then there is a path through T .

Proof Let S(x) = {y : y ≥ x} for x ∈ T . We inductively define f(n)
such that S(f(n)) is infinite for all n. Let r be the minimal element of
T , then S(r) is infinite. Let f(0) = r. Given f(n), let {y1, . . . , ym} be the
immediate successors of f(n). Because S(f(n)) = S(y1)∪ . . .∪S(yn), S(yi)
is infinite for some i. Let f(n+ 1) = yi.

Forcing Constructions

Definition A.22 Let (P,<) be a partial order. We say that F ⊆ P is a
filter if:
i) if p ∈ F , q ∈ P , and p < q, then q ∈ F ;
ii) if p, q ∈ F , there is r ∈ F such that r ≤ p and r ≤ q.
We say that D ⊆ P is dense if for all p ∈ P there is q ∈ D such that

q ≤ p. If D is a collection of dense subsets of P , we say that G ⊆ P is a
D-generic filter if D ∩G 6= ∅ for all D ∈ D.

Lemma A.23 For any partial order P , if D is a countable collection of
dense subsets of P , then there is a D-generic filter G.

Proof Let D0, D1, . . . , list D. Choose p0 ∈ P . Given pn, we can find
pn+1 ≤ pn with pn+1 ∈ Dn. Let G = {q : q ≥ pn for some n}.

Lemma A.23 is the best we can do without extra assumptions. Let P be
the set of all finite sequences of zeros and ones ordered by p < q if p ⊃ q.
The following sets are dense:
En = {p ∈ P : n ∈ dom(p)} for n ∈ ω;
Df = {p ∈ P : ∃n ∈ dom(p) p(n) 6= f(n)} for f ∈ 2ω.
If G is a filter meeting all of the En then g =

⋃
p∈G p. Then g : ω → 2. If

G meets Df , then g 6= f . Thus if D= {En, Df : n ∈ ω, f ∈ 2ω}, then there
is no D-generic filter.
We say that p and q ∈ P are compatible if there is r ≤ p, q and say that

(P,<) satisfies the countable chain condition if whenever A ⊂ P and any
two elements of A are incompatible, then |A| ≤ ℵ0.
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Martin’s Axiom If (P,<) is a partial order satisfying the countable chain
condition, and D is a collection of dense subsets of P with |D| < 2ℵ0 , then
there is a D-generic filter on P .

Of course, if the Continuum Hypothesis is true, then Martin’s Axiom is
a trivial consequence of Lemma A.23. On the other hand, Martin’s Axiom
is consistent with, but not provable from, ZFC +¬CH.


