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Appendix A
Set Theory

In this Appendix, we will survey some of the elementary results from set
theory that we use in the text. We give very few proofs and refer the reader
to set theory texts such as [26], [47], or [57] for further details.

We will work in ZFC, Zermelo—Fraenkel set theory with the Axiom of
Choice. The Axiom of Choice asserts that if (A; : i € I) is a family of
nonempty sets, then there is a function f with domain I such that f(i) € A;
for all i € I.

Zorn’s Lemma and Well-Orderings

If X is a set and < is a binary relation on X, we say that (X, <) is a partial
order if (X,<) EVz -(z < z) and (X, <) EVaVyvz ((x <yAy < z) —
xr < z).

We say that (X, <) is a linear order if in addition

(X, )EVaVy (z<yVez=yVy<ux).

If (X, <) is a partial order, then we say that C' C X is a chain in X if C
is linearly ordered by <.

Theorem A.1 (Zorn’s Lemma) If (X,<) is a partial order such that
for every chain C C X there is © € X such that ¢ < x for all c € C, then
there is y € X such that there is no z € X with z > x. In other words, if
every chain has an upper bound, then there is a mazimal element of X.
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We give one application of Zorn’s Lemma. We say that a linear order
(A, <) is a well-order if for any nonempty C' C A, there is a € C such that
a < b for all b € C. The following characterization is also useful.

Lemma A.2 (A, <) is a well-order if and only if there is no infinite de-
scending chain ag > a1 > as > ... in A.

Theorem A.3 (Well-Ordering Principle) If A is any set, then there
is a well-ordering of A.

Proof Let X = {(Y,;R) : Y C A and R is a well-ordering of A}. We
say that (Y,R) < (Y1,R1) if Y C Y1, R C Ry, and if a € Y1\ Y and
b €Y, then bRa (i.e. every new element is greater than every old element).
Suppose that C' C X is a chain. Let

Y = U Y and R= U =
(Y,R)eC (Y,R)eC

We claim that R i is a well-ordering of Y. We first show that Risa linear
order. Clearly, (aRa) for all @ € V. If ai,as,as € Y such that alRag
and agfiag, then we can find (Y;, R;) € C such that a; € Y; for i = 1,2,3.
Because C' is a chain, there is j such that (Y;, R;) < (Yj, R;) for each
i =1,2,3. Because (Y;, R;) is transitive, a1 Rjas and a1§a3.

If ap > a1 > ... is a decreasing chain in }A% we can find (Y, R) € C such
that ap € Y. Because of the way we order X, all of the a; € Y. In this case,
R would not be a well-order, a contradlctlon Thus (Y R) € X. Clearly,
(Y,R) > (Y, R) for all (Y,R) € C. Thus, every chain has an upper bound.

By Zorn’s Lemma, there is (Y, R) € X maximal. We claim that Y = A.
Suppose that a € A\Y. Let Y/ = AU {a}, and let R = RU(Y x {a})
(i.e., we order Y’ by making a the largest element). Then, R is a well-
ordering and we have contradicted the maximality of (Y, R). Thus ,R is a
well-ordering of A.

Zorn’s Lemma and the Well-Ordering Principle are equivalent forms of
the Axiom of Choice.

Ordinals

Definition A.4 We say that X is transitive if, whenever x € X and y € z,
then y € X. We say that a set X is an ordinal if X is transitive and
well-ordered by €. Let On be the class of all ordinals.

Lemma A.5 i) On is transitive and well-ordered by €.
ii) If o and B are ordinals, then the orderings (o, €) and (03, €) are
isomorphic if and only if o = 3.
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It follows from i) that On is not a set. If On were a set, then On is itself
an ordinal and On € On. This gives rise to an infinite descending chain
contradicting the fact that On is well-ordered by €.

Because € is an ordering of On we often write av < (3 instead of o € 5.
Note that « = { € On : § < a}.

Every well-ordering is isomorphic to an ordinal.

Proposition A.6 If (X, <) is a well-ordering, then there is an ordinal
a such that (X, <) is isomorphic to (o, €). We call o the order type of
(X, <)

Lemma A.7 i) § is an ordinal and if « € On, and a # () then 0 € a.
Thus, O is the least ordinal.

i) If o is an ordinal, then suc(a) = aU{a} is an ordinal, and if § € On,
then 8 < a or suc(a) < .

i) If C is a set of ordinals, then 6 =, .o o is an ordinal, and ¢ is the
least upper bound of the ordinals in C.

Lemma A.7 gives us a description of the first ordinals. By i), 0 = 0 is
the least ordinal. The next ordinals are 1 = {0}, 2 = {0,{0}},.... In
general, we let n + 1 = suc(n). Note that n = {0,1,...,n — 1}. Thus, the
natural numbers are an initial segment of the ordinals. The next ordinal is
w=140,1,2,3,...}.

If a € On, we say that « is a successor ordinal if o = suc(3) for some
ordinal 8. If & # 0 and « is not a successor ordinal then we can say « is
a limit ordinal. The next proposition is the main tool for proving things
about ordinals.

Theorem A.8 (Transfinite Induction) Suppose that C is a subclass of
the ordinals such that

i)0eC,

i) if @ € C, then suc(a) € C, and

1) if « is a limit ordinal and B € C for all B < «, then a € C.
Then C' = On.

We can define addition, multiplication, and exponentiation of ordinals. If
a, B € On, let X be the well-order obtained by putting a copy of 3 after a
copy of a. More precisely, X = ({0} x a)U ({1} x ) with the lexicographic
order. Then o+ 3 is the order type of X. Let Y be the well-order obtained
by taking the lexicographic order on 8 x a. Then « - § is the order type of
B x a. We define o’ by transfinite recursion as follows:

i)a®=1;

i) o) = ofa;

iii) if 3 is a limit ordinal, then o = sup{a” : y < 8} = U, <507

Addition and multiplication are not commutative, but we do have the
following properties.
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Lemma A.9 i) suc(a) = a+ 1.
i) suc(a + ) = a + suc(f).
i) a+ (B+7v) = (a+B8) +7.
) a(By) = (aB)y.
v) a(B+7) =af+ay.
vi) If B =sup,cc 7, then a+ 3 =sup,cca+7.
We can start building the ordinals above w:
wyw+lw+2,..,sup{fw+n:n<wl=wtw=w2, w2+1,w2+2,...,
sup{w2+n:n<wl=w24+w=wl,...,wd,...,w4,...,w5..., sup{wn :

n<w}:wxw:wz,w2+1,...,w3,...,w4,...,sup{w”:n<w}:2w‘“.
ContinuingthisWay:w...,w“’“,...,w”+2,...,w“’2,...,w”3,...,w” e,
w™ w® w?®

WYL wY L w

This is the limit of the ordinals we can easily describe. The next ordinal
is
€0 = sup{w,w”, w* ...}
We could now continue as before. Indeed, all of the ordinals we have de-
scribed so far are still quite small.

Cardinals

We need a method of comparing sizes of sets. Let A be any set. By the Well-
Ordering Principle, there is a well-ordering < of A and, by Proposition A.6,
there is an ordinal « such that (A, <) is isomorphic to a. We let |A| be the
least ordinal « such that there is a well-ordering of A isomorphic to «a.

Proposition A.10 The following are equivalent.
i) |Al = |B.
it) There is a bijection f: A — B.
iii) There are one-to-one functions f : A — B and g : B — A.

We say that A is countable if |A| < w. All of the ordinals a < €( that we
described above are countable. Let w; = {a € On : « is countable}. It is
easy to see that w; is transitive and well-ordered by €. If w; is countable,
then w; € wy and we get a contradiction. Thus, w; is the first uncountable
ordinal. Note that |w1| = w;.

We say that an ordinal « is a cardinal if |a] = «. We recursively define
wq for a € On as follows:

wo = w;

Watr1 ={0 € On: |8] =wa};

if o is a limit ordinal, then w, = supg.,, wg-

Proposition A.11 i) Each wy is a cardinal and wy < wg if a < f.

it) If k is a cardinal, then either k < w or K = wq for some a € On.
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We also use the notation R, = w,. When we are thinking of it as an
ordinal, we use w, and when we are thinking of it as a cardinal, we use R,,.

If k is a cardinal, there is a least cardinal greater than x, which we call
k+. We say that k is a successor cardinal if kK = AT for some A, otherwise (if
K is nonzero), we say that x is a limit cardinal. Note that infinite successor
cardinals are limit ordinals.

For any limit ordinal o > w, the cofinality of « is the least cardinal A
such that there is a function f : A — « and the image of f is unbounded
in a. We let cof(ar) denote the cofinality of .

For example, cof(w) = Ng because a finite function cannot be unbounded
in w. On the other hand, cof(w,) = w because the function n — w, has
unbounded image.

If k > Wy is a cardinal, we say that k is regular if cof(k) = k; otherwise,
we say that & is singular.

Proposition A.12 If k > N is a cardinal, then k™ is regular.

Ng is a regular limit cardinal. It may be the only cardinal with both
properties. We say that k > Ng is inaccessible if x is a regular limit cardinal.
Although we cannot prove that inaccessible cardinals exist, it seems likely
that we also cannot prove that they do not exist. Inaccessible cardinals are
quite large.

Proposition A.13 If k > Vg is inaccessible, then k = N

Proof An induction shows that w, > « for all a. If Kk = N, where a < k,
then 3 — wg is an unbounded map from « into s, a contradiction.

Cardinal Arithmetic

We define addition and multiplication of cardinals. If | X| = k and |Y| = A,
then Kk + A = |({0} x X)U ({1} x V)| and kA = | X x Y|. These operations
are commutative but not very interesting.

Lemma A.14 Let k and X be cardinals. If & and X\ are both finite, then
these operations agree with the usual arithmetic operations. If either k or
A is infinite, then

K+ A = kXA = max{k, \}.

Corollary A.15 i) If |I| = k and |A;| <k for alli € I, then ||J A4;] < k.
i) If k is regular, |I| < k, and |A;| < k for all i € I, then ||J Ai| < k.
iii) Let k be an infinite cardinal. Let X be a set and F a set of functions

[+ X™ — X. Suppose that |F| < k and A C X with |A| < k. Let cl(A)

be the smallest subset of X containing A closed under the functions in F.

Then |cl(A)| < k.
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Exponentiation is much more interesting. If A and B are sets, then A7
is the set of functions from A to B and |A|lBl = |AB].

Lemma A.16 Let k, A\, and p be cardinals.
i) (IQA)'“ = M.
i) If A > Ng and 2 < Kk < A, then 2% = g} = A},
i) If & is regular and \ < K, then k* = sup{r, > : u < K}.

Proof iii) If f : A — k, then, because & is regular, there is a < k such
that f : A — a. Thus k* = Uacr a?. The right-hand side is the union of &
sets each of size pu* for some p < k.

We say that an inaccessible cardinal  is strongly inaccessible if 2* < k
for all A < k.

Corollary A.17 If s is strongly inaccessible and A < k, then k* = k.

We know by Cantor that 2" > « for all cardinals k. The next theorem is
a slight generalization.

Proposition A.18 (Konig’s Theorem) If k > X, then (%) > .

This gives us Cantor’s theorem because 2" = k" > k but also gives us, for
example, that R¥0 > R,

ZFC is too weak to answer basic questions about cardinal exponentiation.
The most interesting is the Continuum Hypothesis.

Continuum Hypothesis (CH) 2% = ;.
Generalized Continuum Hypothesis (GCH) 2% =R, ;.
The Continuum Hypothesis is unprovable in ZFC, but GCH is consistent

with ZFC.! Assuming the Generalized Continuum Hypothesis, we get a
complete picture of cardinal exponentiation.

Proposition A.19 Assume the Generalized Continuum Hypothesis. Let
Ky, A > 2 with at least one infinite.

i) If A\ < K, then \" = k™.

ii) If A < cof(k), then k> = k.

iii) If cof(k) < A < K, then k* = k™.

Finite Branching Trees

Definition A.20 A finite branching tree is a partial order (T, <) such
that:

i) there is 7 € T' such that r < x for all x € T

ii) if x € T, then {y : y < x} is finite and linearly ordered by <;

1Provided ZFC itself is consistent.
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iii) if € T, then there is a finite (possibly empty) set {y1,...,ym} of
incomparable elements such that each y; > x and, if z > «, then z > y;, for
some 4.

A path through T is a function f : w — T such that f(n) < f(n+ 1) for
all n.

Lemma A.21 (Konig’s Lemma) If T is an infinite finite branching
tree, then there is a path through T'.

Proof Let S(x) = {y : y > z} for x € T. We inductively define f(n)
such that S(f(n)) is infinite for all n. Let r be the minimal element of
T, then S(r) is infinite. Let f(0) = r. Given f(n), let {y1,...,ym} be the
immediate successors of f(n). Because S(f(n)) = S(y1)U...US(yn), S(yi)
is infinite for some 4. Let f(n+ 1) = y;.

Forcing Constructions

Definition A.22 Let (P, <) be a partial order. We say that F* C P is a
filter if:

i)ifpe F, g€ P, and p < ¢, then ¢q € F;

ii) if p,q € F, there is r € F such that r < p and r <gq.

We say that D C P is dense if for all p € P there is ¢ € D such that
q < p. If D is a collection of dense subsets of P, we say that G C P is a
D-generic filter if DN G # @ for all D € D.

Lemma A.23 For any partial order P, if D is a countable collection of
dense subsets of P, then there is a D-generic filter G.

Proof Let Dy, Ds,..., list D. Choose pg € P. Given p,, we can find
DPnt+1 < pp, with p,y1 € D,,. Let G = {q: ¢ > p, for some n}.

Lemma A.23 is the best we can do without extra assumptions. Let P be
the set of all finite sequences of zeros and ones ordered by p < ¢ if p D g.
The following sets are dense:

E,={pe P:nedom(p)} for n € w;

Dy ={pe€ P:3n e dom(p) p(n) # f(n)} for f € 2%.

If G is a filter meeting all of the E, then g =, p. Then g:w — 2. If
G meets Dy, then g # f. Thus if D= {E,, Dy :n € w, f € 2*}, then there
is no D-generic filter.

We say that p and ¢ € P are compatible if there is r < p, ¢ and say that
(P, <) satisfies the countable chain condition if whenever A C P and any
two elements of A are incompatible, then |A] < V.
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Martin’s Axiom If (P, <) is a partial order satisfying the countable chain
condition, and D is a collection of dense subsets of P with |D| < 2%, then
there is a D-generic filter on P.

Of course, if the Continuum Hypothesis is true, then Martin’s Axiom is
a trivial consequence of Lemma A.23. On the other hand, Martin’s Axiom
is consistent with, but not provable from, ZFC +-CH.



