
Turing Reducibility

Let A ⊆ N. We will think about computations that can use A as an oracle,
that is at any stage of the computation we can ask the oracle if n ∈ A. We
let P0, P1, . . . be a nice listing of all programs that allow oracle queries. Let
φAn be the partial function computed by program Pn using oracle A.

We say that B is Turing reducible to A if there is an e such that φAe = χB,
the characteristic function of A. We write B ≤T A.

If A ≤T B and B ≤T A we say write A ≡T B. The equivalence class of
A is called the Turing degree of A.

Exercise 0.1 a) Show that ¬A ≤T A
b) Show that if A ≤T B and B ≤T C, then A ≤T C.
c) Show that if A ≤m B, then A ≤T B.
d) Show that if A is recursive and B ≤T A then B is recursive. Conclude

that the ∅ <T H, where H is the halting problem.

Exercise 0.2 For A,B ⊆ N let A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.
a) Show that A,B ≤T A⊕B.
b) Show that if A,B ≤T C then A ⊕ B ≤T C. Thus A ⊕ B is a least

upper bound for A and B.

Exercise 0.3 a) Let A′ = {e : φe(e) ↓}. We call A′ the jump of A. Show
that A <T A

′.
b) Show that if A ≤T B, then A′ ≤T B′. In particular, if A ≡T B, then

A′ ≡T B′.

Lemma 0.4 (Use Principle) If φAe (n) = l, there is k such that if m ≥ k
and A ∩ {0, . . . ,m} = B ∩ {0, . . . ,m}, then φBe (n) = l.

Proof The computation of φAe (n) halts after s steps. It will make finitely
many queries to the oracle. Let m be the largest number queried. In the
computation of φBe (n) will make the same queries and get the same answers
so the computation will be the same. �

It will be useful in the proofs below to define computations with oracles
σ ∈ 2<ω. In a computation with oracle σ = 〈a0, . . . , am〉 we say that φσe (n) ↓
if the computation only make oracle queries about numbers i ≤ m answering
yes if and only if ai = 1.

Note that deciding if φσe (n) ↓ in s steps is recursive. Also if φσe (n) = l,
f ∈ 2ω and σ ⊂ f , then φfe (n) = l.

1



We will give two proofs that there are incomparable Turing degrees. The
first proof will be relatively straightforward. The second will be more compli-
cated but will show that there Turing incomparable recursively enumberable
sets.

Theorem 0.5 (Kleene–Post) There are A,B ≤T H such that A 6≤T B
and B 6≤T A. In particular, ∅ <T A,B <T H.

Proof We build σ0 ⊆ σ1 ⊆ . . . and τ0 ⊆ τ1 ⊆ . . . such that
⋃
σn = χA and⋃

τn = χB. Our entire construction will be computable using H as an oracle.
We do our construction to meet the requirements R1, R2, . . . , where:
• R2e+1 is the requirement to make sure χA 6= φBe and
• R2e+2 is the requirement to make sure χB 6= φAe .
In this construction we will be able to meet requirement Ri at stage i.
Let σ0 = τ0 = ∅

stage s+ 1 = 2e+ 1 We try to make sure that χA 6= φBe .
Let σs = 〈a0, . . . , am−1〉.

case 1: There is no τ ⊇ τs such that φτe(m) converges
In this case we let σs+1 = σŝ 0 and τs+1 = τs. We have made sure that

φBe is not even total.

case 2: There is τ ⊇ τs such that φτe(m) converges.
Choose τ a sequence with minimal code such that φτe(m) converges with

output i. Let τs+1 = τ and let σs+1 = σŝj where j = 0, 1 and j 6= i. We have
made sure that φBe (n) disagrees with χA.

Note that with the oracle for the Halting Problem H we can decide which
case we are and find τs+1. In either case, we have made sure that φBe (n)
disagrees with the characteristic function of A. We can think of this as
having to satisfy two types of requirements:

stage s+ 1 = 2e+ 2 We try to make sure that B 6= φAe . is
This is similar to case when s+ 1 is odd changing the roles of A and B.

At the end of the construction we have insure A 6= φBe and B 6= φAe . Thus
A 6≤T B and B 6≤T A �

Post’s Problem: Is there a recursively enumerable set A such that ∅ <T

A <T H.

2



Theorem 0.6 (Friedberg–Muchnik) There are recursively enumerable A
and B such that A 6≤T B and B 6≤T A. Note that we must have ∅ <T A,B <T

H.

Proof The proof is a finite injury priority argument.
We will do a recursive construction where at various stages we will enu-

merate elements into A and B. At any stage s of our construction we will
have finite sets As and Bs. As in the previous constructions we have to even-
tually meet the same requirements R1, R2, . . . from the previous construction.
The difference is that we may not be able to tell when we’ve met Ri.

Basic Strategy Here is the idea on how we will try to meet R2e+1 and make
sure that χA 6= φBe .

Pick a number n bigger than all the numbers we’ve considered so far. For
the moment we will commit to keeping n out of A. At every further stage s of
the construction we will run the computation φBs

e (n) for s steps. If it doesn’t
halt or halts and outputs something other than 0, then we don’t have to do
anything as φBe will end up being a partial function or φBe (n) 6= 0 = χA(n).
If it halts and φBs

e (n) ↓= 0 and k is the largest element for which we make
an oracle query, we then set up a restraint saying that no number less than
or equal to k will ever be allowed into B. This will insure φBe (n) = φBs

e (n).
If, in addition, φBs

e (n) = 0, we will then change our mind and add n to As+1.
This will make sure that φBe (n) 6= χA(n).

We will do similar things to try to meet the requirements R2i+2 : φAi 6= B.
The problem is that these tasks may interfere with each other. For example,
suppose in the description of the Basic Strategy that we decide we have to
add n to As+1, but there is a requirement that is restraining us from adding
n to A because it wants us to preserve some computation. How do we settle
these conflicts between requirements? We priortize them! We say that Ri

has priority over Rj if i < j. In the situation above if the requirement that
wants to put n into A has higher piority we let it and the other requirement
has to start over. But if the requirement that is restraining n has higher
priority, the first requirement will have to start over. The trick is we need to
make sure that each of the requirements is eventually satisfied.

Requirement Rn will pick xn a witness that the requirement is met. For
example, if n = 2e + 1, then, at the end of the construction, we will have
χA(xn) 6= φBe (xn). Fix π:N2 → N a recursive bijection. The witness xn will
be chosen from the numbers π(n, 0), π(n, 1), . . .. Let xn(s) be our quess for

3



the witness xn. We must arrange things so that xn(s) = xn for all sufficiently
large s.

At some points the requirement Rn may want to keep numbers out of
the one of the sets. For example, if n = 2e + 1 requirement n may want
to preserve a computation by keeping numbers out of B. We will define a
function rn(s) such that requirement n = 2e + 1 wants to keep all numbers
≤ rn(s) our of A or B.

stage 0
Let A0 = B0 = ∅. Set xn(0) = π(n, 0) and rn(0) = −1 for all n.

stage s+ 1
Check for requirements that require attention.
We say that Rn requires attention, for n = 2e+ 1 if φBs

e (xn(s)) ↓= 0 in at
most s-steps and r(n, s) = −1. Simiarly, if n = 2e+ 2, Rn requires attention
if φAs

e (xn(s) ↓= 0 and r(n, s) = −1.
If no Rn requires attention for n ≤ s, we let xi(s + 1) = xi(s) and

ri(s + 1) = ri(s) for all i. Otherwise let Rn be the requirement of highest
priority that requires attention. Without loss of generality assume n = 2e+1.

We take the following actions:
• for i < n let xi(s + 1) = xi(s) and ri(s + 1) = ri(s), i.e., do nothing

about requirements of higher priority;
• enumerate xn(s) into A i.e., we let As+1 = As∪{xn(s)}, Bs+1 = Bs and

xn(s+ 1) = xn;
• let rn(s + 1) = K where K is maximal such that the computation of

φBs
e (xn(s)) makes an oracle query about K;
• for j > n we say Rj is injured and everything Rj has done is wiped

out, i.e., we set rj(s + 1) = −1 and xj(s + 1) = π(j, k) where k is minimal
such that xj(s + 1) > xj(s) and xj(s + 1) > r(i, s + 1) for all i < j (i.e., we
pick the next possible witness above all restraints that we have set of higher
priority).

claim Each requirement Rn requires attention only finitely often and each
requirement is eventually met.

Note that R1 is never injured. Suppose n = 2e + 1 (the other case is
similar). Let s be the last stage where some Ri of higher priority requires
attention. At that stage we will have set rn(s+ 1) = −1. We will be keeping
xn(s + 1) out of A and hope that φBe (xn(s + 1)) 6= 0. If Rn never requires
attention, this will happen and the requirement will be met. If not, let t > s

4



be the first stage where Rn requires attention. At this stage we will put xn(t)
into A and restrain elements from entering B so that φBe (xn(t)) = 0. As Rn

will never be injured again, we will preserve this restraint. In either case
φBe 6= χA. �

There has been a lot of work on the structure of the Turing degrees of re-
cursively enumerable set–see for example R. Soare’s Recursively Enumerable
Sets and Degrees. Interestingly, there are no “natural” examples of recur-
sively enumerable sets of intermediate degree.

5


