Math 502 Mathematical Logic

Problem Set 4

Due: Friday October 2

We say that K is an *elementary class* if there is a theory T such that $K = \{M : M \models T\}$.

- 1) Let $\mathcal{L} = \{E\}$ where E is a binary relation. Let T_0 be the axioms for equivalence relations. Suppose $T \supseteq T_0$ is an \mathcal{L} -theory such that for all n there is $\mathcal{M} \models T$ with an equivalence class of size at least n. Then there is $\mathcal{M} \models T$ with an infinite equivalence class. Conclude that the class of all equivalence relations where every class is finite is not an elementary class.
- 2) Let $\mathcal{L} = \{R\}$ where R is a binary relation. Recall that a graph is an \mathcal{L} -structure \mathcal{M} where $R^{\mathcal{M}}$ is symmetric and irreflexive. We say that a graph is connected if for each $x \neq y$ we can find a path from x to y. Prove that the class of connected graphs is not an elementary class.
- 3) Let \mathcal{L} be the language $\{\cdot, e\}$ where \cdot is a binary relation and e is a constant symbol. Let \mathcal{K} be the class of all groups where every element has finite order. Prove that \mathcal{K} is not an elementary class.
- 4) Let \mathcal{L} be the language with one binary relation symbol <. Let T be an \mathcal{L} -theory extending the theory of linear orders such that T has infinite models. Show that there is $\mathcal{M} \models T$ and an order preserving embedding $\sigma : \mathbb{Q} \to M$ of the rational numbers into M. For example there is $\mathcal{M} \models \operatorname{Th}(\mathbb{Z},<)$ in which the rational order embedds.[Hint: Add constants c_q for all $q \in \mathbb{Q}$ and let $T^* = T \cup \{c_q < c_r : q, r \in \mathbb{Q}, q < r\}$.]
- 5) We say that an ordered abelian group (G, +, 0, <) is archimedian if for all $x, y \in G$ with x, y > 0 there is a positive integer m such that x < my. Show that there are non-archimedian models of $\text{Th}(\mathbb{Q}, +, <)$.
- 6) Let $\mathcal{L} = \{s\}$, where s is a unary function symbol. Let T be the \mathcal{L} -theory that asserts that s is a bijection with no cycles (i.e., $s^{(n)}(x) \neq x$ for n = 1, 2, ...). For which cardinals κ is T κ -categorical? Is T complete?