
Part II

Computability

6 Models of Computation

What is a computable function? Our modern intuition is that a function
f : N → N is computable if there is a a program in a computer language
like C++, PASCAL or LISP such that if we had an idealized computer, with
unlimited memory, and we ran the program on input n it would eventually
halt and output f(n).
While this definition could be made precise, it is rather unwieldy to try to

analyze a complex modern programming language and an idealized computer.
We begin this section by presenting two possible candidates for the class
of computable functions. The first will be based on register machines, a
very primitive version of a computer. The second class will be defined more
mathematically. We will then prove that these two classes of functions are
the same. Church’s Thesis will assert that this class of functions is exactly
the class of all computable functions.
Church’s Thesis should be though of as a statement of philosophy or

physics rather than a mathematical conjecture. It asserts that the definitions
we have given completely capture our intuition of what can be computed.
There is a great deal of evidence for Church’s Thesis. In particular, there
is no know notion of deterministic computation, including C++-computable
or the modern notion of quantum computable, that gives rise to computable
functions that are not included in our simple classes. 1

Register Machines

We will take register machines as our basic model of computations. The
programming language for register machines will be a simple type of assembly
language. This choice is something of a compromise. Register machines are
not as simple as Turing machines, but they are much easier to program. It

1I do not include notions of random computations or analog computations. But our

model could easily be extended to take these into account.

On the other hand issues like time and space complexity or feasability may vary as we

change the model.

43



is not as easy to write complicated programs as it would be in a modern
programming language like C++ or PASCAL, but it will be much easier to
analyze the basic steps of a computation.
In our model of computation we have infinitely many registers R1, R2, . . ..

At any stage of the computation register Ri will store a nonnegative integer
ri.

Definition 6.1 A register machine program is a finite sequence I1, . . . , In
where each Ij is one of the following:
i) Z(n): set Rn to zero; rn ← 0;
ii) S(n): increment Rn by one; rn ← rn + 1;
iii) T(n,m): transfer contents of Rn to Rm; rm ← rn;
iv) J(n,m,s), where 1 ≤ s ≤ n: if rn = rm, then go to Is otherwise go to

the next instruction;
v) HALT

and In is HALT.

A register machine must be provided with both a program and an initial
configuration of the registers. A computation procedes by sequentially follow-
ing the instructions. Note that for any program P there is a number N such,
no matter what the initial configuration of the registers is, any computation
with P will use at most registers R1, . . . , RN .

Example 6.2 We give a program which, if we start with n in R1, ends with
R1 containing n− 1 if n > 0 and 0 if n = 0.

1) Z(2)
2) J(1,2,10)
3) Z(3)
4) S(2)
5) J(1,2,9)
6) S(2)
7) S(3)
8) J(1,1,4)
9) T(3,1)
10) HALT

We first test to see if R1 contains 0. If it
does we halt. If not, we make r2 = 1 and
r3 = 0 and test to see if r1 = r2 have the
same contents. If they do, we move r3 to
R1 and halt. Otherwise, we increment r2
and r3 until r1 = r2. Since r3 will always be
one less than r2, this produces the desired
result.

Example 6.3 We give a program which if adds the contents of R1 and R2
and leaves the sum in R1.

44



We set r3 ← 0. We increment R3 and R1 until r3 = r2.

1) Z(3)
2) J(2,3,6)
3) S(1)
4) S(3)
5) J(1,1,2)
6) HALT

Example 6.4 We give a program to multiply the contents of R1 and R2 and
leave the product in R1.

The main idea is that we will add r1 to itself r2 times using R3 to store
the intermediate results. R4 will be a counter to tell us how many times
we have already added r1 to itself. We add r1 to r3 by incrementing R3, r1
times. We use R5 to count how many times we have incremented R3.

1) Z(3)
2) Z(4)
3) J(2,4,10)
4) Z(5)
5) J(1,5,9)
6) S(3)
7) S(5)
8) J(1,1,5)
9) S(4)
10) T(3,1)
11) HALT

Note that lines 4)–8) are just a slightly modified version of Example
6.3. We add r1 to r3 storing the result in R3. We can think of this as a
“subroutine”. It is easy to see that we could add a command to our language
A(n,m,s) that does:

rs ← rn + rm.

Any program written with this additional command could be rewritten in
our original language. Similarly, using Example 6.2 we could add a command
D(n) that decrements Rn if rn > 0 and leaves Rn unchange if rn = 0.
We give one more example of a program that, on some initial configura-

tions, runs for ever.

45



Example 6.5 We give a program such that if r1 is even halts with r1/2 in
R1 and otherwise never halts.

1) Z(2)
2) Z(3)
3) J(1,2,8)
4) S(2)
5) S(2)
6) S(3)
7) J(1,1,2)
8) T(3,1)
9) HALT

We next define what it means for a function f : Nk → N to be computable
by a register machine. The last example shows that we need to take partial
functions into account.
Suppose P is a register machine program. If x = (x1, . . . , xk) we consider

the computation where we begin with initial configuration r1 = x1, . . . , rk =
xk and rn = 0 for n > k. If this computation halts we say that P halts on
input x.

Definition 6.6 Suppose A ⊆ Nk. We say f : A → N is an RM-computable
partial function if there is a register machine program P such that:
i) if x 6∈ A, then P does not halt on input x;
ii) if x ∈ A, then P halts on input x with f(x) in register R1.

We could start showing more and more functions are RM-computable by
writing more complicated programs. Instead we will give mathematically
define an interesting class of fuctions and prove it is exactly the class of
RM-computable functions.

Primitive Recursive Functions

Definition 6.7 The class of primitive recursive functions is the smallest
class C of functions such that:
i) the zero function, z(x) = 0 is in C,
ii) the sucessor function s(x) = x+ 1 is in C,
iii) for all n and all i ≤ n the projection function πn

i (x1 . . . xn) = xi, is in
C (in particular the identity function on N is in C),

46



iv) (Composition Rule) If g1 . . . gm, h ∈ C, where gi : Nn → N and h :
Nm → N, then

f(x) = h(g1(x) . . . gm(x))

is in C,
v) (Primitive Recursion) If g, h ∈ C where g : Nn−1 → N and h : Nn+1 →

N, then f ∈ C where:

f(x, 0) = g(x)
f(x, y + 1) = h(x, y, f(x, y)).

We now give a large number of examples of primitive recursive functions
with derivations showing that they are primitive recursive. A derivation is
a sequence of functions f1 . . . fm such that each fi is either z, s or π

n
i or is

obtained from earlier functions by compostion or primitive recursion.
We will use Church’s lambda notation. For example λx, y, z[xy+z] is the

function f where f(x, y, z) = xy + z.

1) the n-ary zero function: λx1 . . . xn[0]
f1 = πn

i , f2 = z, f3 = f2 ◦ f1.

2) the constant function λx[2]
f1 = s, f2 = z, f3 = s ◦ z, f4 = s ◦ f3.

3) λx, y[x+ y]
f1 = π11 = λx[x], f2 = π33 , f3 = s, f4 = f3 ◦ f4 = λx, y, z[z + 1], f5 =

λx, y[x+ y] (by primitive recursion using g = f1 and h = f4).

The formal derivations are not very inlightening so we give an informal
primitive recursive defintion of addition (and henceforth only give informal
defintions):

x + 0 = x
x + (y + 1) = s(x+ y).

4) multiplication
x · 0 = 0
x · (y + 1) = xy + x.

5) exponentiation
x0 = 1
xy+1 = xy · x.

47



6) predecesor:

pr(x) =

{
0, if x = 0;
x− 1, otherwise.

pr(0) = 0
pr(y + 1) = y.

7) sign

sgn(x) =

{
0, if x = 0;
1, otherwise.

sgn(0) = 0
sgn(y + 1) = 1

8) −·

x −· y =

{
0, if y ≤ x;
x− y, otherwise.

x −· 0 = x
x −· (y + 1) = pr(x −· y)

9) Factorials
0! = 1
(n+ 1)! = n!(n + 1)

If f(x, y) is primitive recursive then so is

λx, n[
∑

y≤n

f(x, y)]

.
F (x, 0) = f(x, 0)
F (x, y + 1) = F (x, y) + f(x, y + 1).

Similary λx, n[
∏

y≤n f(x, y)] is primitive recursive.

We say that R(x) is a primitive recursive predicate if it is a 0-1 valued
primitive recursive function. If P and Q are primitive recursive predicates
then so are:

P ∧Q(x) = P (x) ·Q(x)
P ∨Q(x) = sgn(P (x) +Q(x))
¬P (x) = 1 −· P (x)

10) x = y is a primitive recursive relation.
The characteristic function of x = y is 1 −· (sgn(x −· y) + sgn(y −· x))

48



Also if P (x, y) is a primitive recursive relation and g(x) is primitive re-
cursive, then

∃y ≤ g(x)P (x, y) = sgn(
∑

y≤g(x)

P (x, y)), and

∀y ≤ g(x)P (x, y) = sgn(
∏

y≤g(x)

P (x, y))

are primitive recursive relations.

For example:

11) x|y = ∃z ≤ y xz = y is primitive recursive.

Exercise 6.8 Show that x ≤ y and x < y are primitive recursive relations.

Exercise 6.9 (Definition by cases): Suppose g and h are primitive recur-
sive functions and P is a primitive recursive predcate. Then f is primitive
recursive where:

f(x) =

{
g(x), if P (x);
h(x) otherwise.

Exercise 6.10 Suppose f(x, y) is primitive recursive. Let g(x, z) = max{f(x, y) :
y ≤ z} and h(x, z) = min{f(x, y) : y ≤ z}. Show that g and h are primitive
recursive.

If P (x, y) is a primitive recursive function define µy P (x, y) to be the least
y such that P (x, y) if such a y exists and otherwise µy P (x, y) is undefined.
In general λx[µy P (x, y)] is only a partial function. Even if it is total, it will
not in general be primitive recursive. The next excercise gives the best we
can do primitive recursively.

Exercise 6.11 Let P (x, y) be a primitive recursive predicate and g(x) a
primitive recursive function. Let

f(x) =

{
0, if ∀y ≤ g(x) ¬P (x, y);
µy P (x, y), otherwise.

Then f is primitive recursive.

We next show that coding and decoding of sequences is primitive recur-
sive.

49



12) “x is prime” is a primitive recursive predicate.
x is prime if and only if x 6= 0 ∧ x 6= 1 ∧ ∀y ≤ pr(x) ¬(y|x).

13) We next show that the function λn[pn] is primitive recursive, where pn

is the nth prime number (and p0 = 1). To show this we use the following
consequence of Euclid’s proof that there are infinitely many primes. For any
number n ≥ 1 there is a prime number p wich that n < p ≤ n! + 1. Thus:

p0 = 1
pn+1 = µx ≤ pn! Prime(x).

We code the sequence (n1 . . . nm) by x =
∏
pni+1

i .

14) x codes a sequence is a primitive recursive predicate.
Seq(x) if and only if ∀p ≤ x∀q ≤ p [(Prime(p)∧Prime(q)∧ p|x)→ q|x].

15) Define l(x) to be 0 if x does not code a sequence, otherwise let l(x) be
the length of the sequence coded by x.

l(x) =

{
0, ¬Seq(x),
max m(pm|x), otherwise.

16) Define (x)i to be the i
th element of the sequence coded by x if x codes a

sequence of length at least i, otherwise it is zero.

(x)i =

{
max n(pn+1

i |x), Seq(x) ∧ i ≤ l(x),
0, otherwise.

We next show that we can simultaneously define several functions by primi-

tive recursion.

Lemma 6.12 Suppose g1, . . . , gn : Nk → N , h1, . . . , hn : Nk + n+ 1 → N
are primitive recursive and we define f1, . . . , fn : Nk+1 → N by

fi(x, 0) = gi(x)

fi(x,m+ 1) = hi(x,m, f1(x,m), . . . , fn(x,m)).

Then f1, . . . , fn are primitive recursive.

Proof We define a primitive recursive function F : Nk+1 → N such that
F (x,m) =

∏n

i=1 p
fi(x,m)
i . Then we will have fi(x,m) = v(pi, F (x,m)). Let

F (x, 0) =

n∏

i=1

p
gi(x)
i

50



F (x,m+ 1) =
n∏

i=1

p
hi(x,m,v(p1,F (x,m)),...,v(pn,F (x,m)))
i .

Then F is primitive recursive and f1, . . . , fm are primitive recursive.

The primitive recursive functions do not exhaust the functions com-
putable by algorithms. Each primitive recursive function has a derivation.
As usual we can code each derivation by a natural number. We give a list-
ing of all the primitive recursive functions. Define Fn to be z if n is does
not code a derivation, otherwise Fn is the function with derivation coded
by n. Intuitively we can do this on such a way that G = λn, x[Fn(x)] is
“computable”. If this function is primitive recurive, then so is the function
f(x) = G(x, x)+ 1. But f can not be primitive recursive, for if f = Fn, then
f(n) = G(n, n) + 1 = Fn(n) + 1 = f(n) + 1. Thus G is “computable”, but
not primitive recursive.

Exercise 6.13 We can give a more concrete example of a “computable” non-
primitive recursive function. For any function F we define the nth iterate of
F as follows:

F (0)(x) = x
F (n+1)(x) = F (F (n)(x))

We now define a sequence of functions f0, f1 . . ..
f0(x) = x + 1

fn+1(x) = f
(x)
n (x).

Define the Ackermann function, A(x) = fx(x).
a) Show that each fi is primitive recursive.
b) We say f ¿ g if there is a number n such that for all m > n, f(m) <

g(m). Show that for any primitive recursive function g there is an n such
that g ¿ fn.
c) Show that for all n, fn ¿ A. Thus the Ackermann function is not

primitive recursive.
The argument above shows that for any class of total computable func-

tions, we can not give a listing H1, H2 . . . such that the function λx, y[Hx(y)]
is computable. For this reason we will also consider partial computable func-
tions. The following definition gives a natural extension of the primitive
recursive functions.

51



The Recursive Funcitons

Definition 6.14 The class of recursive functions is the smallest class C of
partial functions, containing the the zero function, succesor, and all projec-
tion functions and closed under composition, primitive recursion and
vi) (Unboundend Search) If f(x, y) is in C, then so is F where F (x) is

the least y such that f(x, y) = 0 and for all z < yf(x, z) is defined. As above
we denote F as µy f(x, y) = 0.

We use ↑ to denote “undefined”.
For example let

g(n) =

{
1, ∃x, y, z xn + yn = zn;
↑, otherwise.

Then g is a recursive function.

Our intuition tells us that every recursive function is computable. We will
prove that the RM-computable functions are exactly the partial recursive
functions.

Theorem 6.15 Every recursive function is RM-computable.

Proof Clearly the basic functions z, s and πn
i are RM-computable. Thus

we need only show that the RM-computable functions are closed under com-
position, primitive recursion and unbounded search.

claim 1 Suppose f1, . . . , fn : Nm → N and g : Nn → N are RM-computable.
Let h(x) = g(f1(x), . . . , fn(x)), then h is RM-computable.
Suppose the computation of Pi is a program to compute fi. By modifying

the program slightly we may assume that:
• Pi does not destroy the input (ie. does not alter registers R1, . . . , Rm)
• uses only registers Rn+i+1, Rn+i+2, . . .
• halts with fi(x) in Rn+i.

[If necessary we modify Pi to P
∗
i which starts by copying Rj into Rn+ij for

j ≤ n, and then is identical to Pi except that for all j the role of Rj is played
by Rn+i+j .]
The program for computing h begins by running the programs P1, . . . , Pm

(except that HALTS are replaced by jumping to the begining of the next pro-
gram). Once we run these programs the registers contain a1, . . . , an, f1(a), . . . , fm(a).

52



We next write f1(a), . . . , fm(a) into the first m-registers and erase all of
the other registers which were used in the earlier computations. We now run
the program to compute g.

claim 2 Suppose h : Nm → N and g : Nm+2 → N are RM-computatble
(possibly partial) functions. Let f be defined from g and h by primitive
recursion. Then f is RM-computable.
step 0:
We start with x, y in the first m+ 1-registers.
• let rm+2 ← 0; this will be a counter
• copy x into Rm+3, . . . , R2m+2
• run the program for h suitably modified such that we end with the

configuration
(x, y, 0, h(x), 0, 0, . . .).

In general at the end of step s we will have (x, y, s, f(x, s), 0, 0, . . .).

step s+ 1
• if rm+2 = rm+1 we are done, fiddle with things so that the configuration

is
(f(x, s), 0, 0, . . .)

and halt, otherwise.
• increment rm+3. Move things around so that we have configuration

(x, y, s+ 1, x, y, f(x, s), 0, 0, . . .).

Run the program for g suitably modified so that we end with configuration

(x, y, s+ 1, f(x, s+ 1), 0, 0, . . .).

• Go to next step.

This program computes f

claim 3 If f(x, y) is RM-computable, then µy f(x, y) = 0 is RM-computable.
Consider the following program:
• Start with configuration (x, 0, 0, 0, . . .).

stage s:
• At the beging of stage s we will have configuration.

(x, s, 0, 0, . . .)

53



• Change configuration to (x, s, x, s, 0, . . .).
• Run modified version of program for f if this halts we will have config-

uration
(x, s, f(x, s), 0, 0 . . .).

• If f(x, s) = 0 halt with configuration (s, 0, 0, . . .). If not change to
configuration (x, s+ 1, 0, 0, . . .) and go to next stage.

If there is an s such that f(x, s) = 0 and for all t < s, f(t, s) ↓6= 0, then
we will eventually halt and output s. Otherwise the search will continue
forever.

Thus every recursive function is RM-computable.

Theorem 6.16 Every RM-computable function is recursive.

Proof Let f : Nn → N be RM-computable (possibly partial). Let I1, . . . , Im
be a program which computes f . Suppose this program uses only registers
R1, . . . , RN . We define two primitive recursive functions g1, . . . , gN : Nm+1 →
N and j : Nm+1 → N such that:

gi(x, s) = contents of Ri at stage s on inputx

and

j(x, s) =

{
0 if the machine on input x has halted by stage s
j if Ij is the next instruction to be executed.

Let h(x) = µs j(x, s) = 0. Then f(x) = g1(x, h(x)).

The construction of gi and j are routine but tedious primitive recursions.
We give one example. Consider the program to compute

f(x, y) =

{
x− y y ≤ x
↑ y > x.

1) Z(3)
2) J(1,2,6)
3) S(2)
4) S(3)
5) J(1,1,2)
6) T(3,1)

54



j(x, y, s) =





1 s = 0
2 s = 1 or j(x, y, s− 1) = 5
3 j(x, y, s− 1) = 2
4 j(x, y, s− 1) = 3
5 j(x,y,s-1)=4
6 j(x, y, s− 1) = 2 and g2(x, y, s− 1) = g1(x, y, s− 1)
7 j(x, y, s− 1) = 6
0 j(x, y, s− 1) = 7 or 0.

g1(x, y, 0) = x

g2(x, y, 0) = y

g2(x, y, s+ 1) =

{
g2(x, y, s) j(x, y, s) 6= 3
g2(x, y, s) + 1 otherwise.

g3(x, y, 0) = 0

g3(x, y, s+ 1) =

{
g3(x, y, s) j(x, y, s) 6= 4
g3(x, y, s) + 1 otherwise.

These functions are clearly primitive recursive.

Church’s Thesis

Church’s Thesis A partial function is computable if and only if it is partial
recursive

Church’s Thesis asserts that the partial recursive functions, or the RM-
computable functions, completely capture our intuitve notion of computabil-
ity.
We will use Church’s Thesis frequently in arguments by giving an intuitive

argument that a function is computable and then asserting that therefore it
is recursive or RM-computable. Whenever we make such an argument, we
are asserting that, if challenged, we could produce the RM-machine code that
would compute the function.

55



There is a great deal of evidence for Church’s Thesis. Any reasonable
notion of “computabile function” has been shown to be equivalent to “partial
recursive” or “RM-computable”. Indeed, Church first stated the conjecture
for functions definable in λ-calculus, an ancestor of the LISP programming
language.

Random Access Machines

We give one more argument towards the plausibility of Church’s thesis. One
aspect of modern computing that is missing in register machines is dynamic
access to memory. In a modern computer language we can compute a number
n and then store another number in memory cell n. We will describe a
generalization of register machines that allows this kind of dynamic access
and prove that they do not allow us to compute new functions.

Definition 6.17 A Random Access Machine is one where we have memory
locationsM0,M1,M2,M3, . . .. Let mi be the contents ofMi. A program for a
random access machine is a finite sequence of instructions I1, . . . , Im. Where
the allowable instructions are:
i) Z(n); set mn to zero
ii) S(n); increment mn

iii) J(i,j,l); if mi = mj, go to instruction l.
iv) T(i,j); transfer the contents of Mmi

to Mmj

v) HALT

The key difference is that we are allowed to specifiy in the program what
address we want to store something in.
A function f is said to be RAM-computable if there is a random access

machine program which given initial configuration (x, 0, 0, . . .) halts with
f(x) in M0 if x ∈ dom(f) and does not halt if x 6∈ dom(f).

Exercise 6.18 Every RM-computable function is RAM-compuable.

We next out line the proof that every RAM-computable function is RM-
computable. The key idea is to code configurations of the RAM as a single
number. Suppose at some stage s, n is the largest memory location that we
have used. Then the configuration of the machine is given by the sequence
(m1, . . . , mn, 0, 0, 0, . . .).
We code this configuration with the number

∏
pmi

i . All of the opera-
tions of the machine correspond to simple arithmetic operations on the code.

56



Let v(p, x) = largest power of p dividing x. Note that v(pi, x) extracts the
contents of Mi from the code x.
For example: • Z(n): corresponds to the operation

x 7→
x

p
v(p,x)
n

.

• S(n): corresponds to
x 7→ xpn.

• T(i,j): Let l = v(pj, x) and k = v(pi, x). The new configuration is coded
by

x

p
v(pl,x)
l

p
v(pk,x)
l

Exercise 6.19 Using the above idea show that any RAM computable func-
tion is RM computable.

Henceforth we will usually use Church’s thesis blindly. We will say that
a partial function is computable if it is RM-computable with full confidence
that anything which is intuitively computable can be done with a register
machine.

7 Universal Machines and Undecidability

Our main goal in this section is to prove that there is a computable partial
function Ψ : N2 → N such that if φn is the function

φn(x) = Ψ(n, x)

then φ0, φ1, . . . is an enumeration of all computable partial functions.
We will code register machine programs by natural numbers and we will

arange the coding so that each number codes a program. If Pn is the program
with code n, then φn(x) will be the result of running Pn on input x.
The register machine computing Ψ is a universal register machine. It

behaves like a modern compiler. If f is a computable function we find e such
that f = φe and compute f(x) by computing Ψ(e, x).

Our first task is to code register machine programs. We will use a more
subtle coding than the one of §6 to insure that every natural number codes
a program.

57



Let π : N× N→ N by π(m,n) = 2m(2n + 1)− 1.

Lemma 7.1 π is a bijection and both π and π−1 are computable (indeed
primitive recursive).

Proof Clearly π is primitive recursive. To calculate π−1(x), factor x+1 = yz
where y is a power of 2 and z is odd. Then m = log2 y and n =

z−1
2
.

Once we can code pairs it is easy to code triples. We view (a, b, c) as
((a, b), c). Let ψ : N3 → N by

ψ(p, q, r) = π(π(p, q), r).

Let I be the set of all instructions for register machines. There is β : I →
N a computable bijections.

β(HALT) = 0
β(Z(n)) = 4(n− 1) + 1
β(S(n)) = 4(n− 1) + 2
β(T(m,n)) = 4(π(m− 1, n− 1)) + 3
β(J(m,n, r)) = 4(ψ(m− 1, n− 1, r − 1)) + 4

β is easy to decode. For example for what i is β(i) = 47? Since 47 ≺
3(mod4), i must code T(m,n) for some m and n, where π(m − 1, n − 1) =
47−3
4
= 11. Since 11 + 1 = 22(2 · 1 + 1), π(2, 1) = 11. Thus i codes the

instruction T (3, 2).

We also want
τ :
⋃

k>0

Nk → N

a computable bijection with computable inverse. We let

τ(a1, . . . , ak) = 2
a1 + 2a1+a2+1 + 2a1+a2+a3+2 . . .+ 2a1+...+ak+k−1 − 1.

Given x we calculate τ−1(x) as follows:
i) find the binary expansion of x + 1 = 2b1 + . . .+ 2bk

ii) Let a1 = b1 and ai+1 = bi+1 − bi − 1 for 1 ≤ i < k.

For example we calculate τ−1(47): 47 + 1 = 2 + 22 + 23 + 25. Thus
a1 = 1, a2 = 0, a3 = 0,and a4 = 1. Thus π−1(47) = (1, 0, 0, 1) [note:
47 = 21 + 21+0+1 + 21+0+0+2 + 21+0+0+1+3 − 1]

58



We now give a method for coding all register machine programs. Let P
be the program I1, . . . , Im by

γ(P ) = τ(β(I1), . . . , β(Im)).

Form ∈ N, let Pm = γ−1(m). Let φ
(n)
m be the n-ary function computed by

program Pm. Clearly φ
(n)
0 , φ

(n)
1 , . . . is a list of all partial recursive functions

in n-variables. [We will supress the superscript if it is clear]
If f is computable we say that n is an index for f if f = φn. There will

usually be many indicies for f .

Consider the partial function Ψ(n) : Nn+1 → N by Ψ(n)(e, x) = φ
(n)
e (x).

Theorem 7.2 The functions Ψ(n) are computable.

Proof For notational simplicity we will consider only the case n = 1.
Informally we compute Ψ(e, x) by decoding e to obtain the program Pe.

Simulate program Pe on input x.
We use one number to store the register configuration in the simulation.

Suppose we are using registers R1, . . . , Rm and Ri contains ri. We will code
this configuration by

c =
m∏

i=1

pri

i .

We call c the configuration code of the machine. The current state of the
machine will be σ = π(c, j) where j is the next instruction to be executed
(and if we have halted j = 0) [here π is the pairing function].
Define c(e, x, t) = configuration after t steps of program Pe on input x if we

have not yet halted. If we have halted let c(e, x, t) be the final configuration.
Let j(e, x, t) = number of the next instruction if the computation of Pe

on input x has not halted by step t and let it be 0 otherwise.
Let σ(e, x, t) = π(c(e, x, t), j(e, x, t)).

claim c, j and σ are computable (indeed they are primitive recursive).
• c(e, x, 0) = 2x and j(e, x, 0) = 1.

• Given c = c(e, x, t) and j = j(e, x, t), we compute j(e, x, t + 1) and
c(e, x, t+ 1).

• If j = 0, then c(e, x, t+ 1) = c and j(e, x, t+ 1) = j.

59



• If j > 0, then decode e to find Ij.

• If Ij is I(m) then c(e, x, t+ 1) = c · pm and j(e, x, t+ 1) = j + 1.

• If Ij is Z(m) then c(e, x, t+1) =
c

pl
m
where l is the largest such that pp

m

divides c, and j(e, x, t + 1) = j + 1.

• If Ij is T (n,m) then c(e, x, t+ 1) = c · pl−k
m where l is largest such that

pl
n divides c and k is largest such that p

l
m divides c. Let j(e, x, t+1) = j+1.

• If Ij is J(n,m, i) then c(e, x, t+1) = c and j(e, x, t+1) = i if the largest
k such that pm divides c is equal to the largest l such that pn divides c, and
otherwise j(e, x, t+ 1) = j + 1.

• If Ij is HALT, then c(e, x, t + 1) = c and j(e, x, t) = 0.

Once we know that c and j are computable (indeed primitive recursive),
we obtain a general recursive h(e, x) = µtj(e, x, t) = 0. Then Ψ(e, x) is the
largest n such that 2n divides c(e, x, h(e, x)). Clearly Ψ is computable.
The machine that computes Ψ is called the Universal Register Machine.

Definition 7.3 Let T = {(e, x, s) : Pe on input x halts by stage s}. This is
called Kleene’s T-predicate. The arguments above show that T is primitive
recursive.

The following theorem is often useful. (For some reason it is often refered
to as the s-m-n theorem).

Lemma 7.4 (Parameterization Lemma) If f(x, y) is a computable par-
tial function then there is a total computable function k(x) such that for all
x, k(x) is an index for the function y 7→ f(x, y). Indeed the function k(x)
can be choosen one to one.

Proof Let P be a program computing f(x, y) [starting with x in R1 and y
in R2. Consider the following program Qn. Start with y in register 1.

1) T(2,1) r2 ← r1
2) Z(1) r1 ← 0
3) S(1) r1 ← 1
4) S(1) r1 ← 2
...

...
n+2) S(1) r1 ← n

P

60



If we start with input y, after step n + 2 we will have n in R1 and y in
R2. Running the program P will compute f(n, y).
Thus the program Qn is a program to compute λy[f(n, y)]. The function

k is the function which takes us from n to a code for the program Pm. k is
easily seen to be one to one.

Definition 7.5 We say that a set A ⊂ Nm is recursive if it’s characteristic
function

χA(x) =

{
1 x ∈ A
0 x 6∈ A

is computable.

Since there are 2ℵ0 subsets of N and only ℵ0 possible algorithms, most
subsets of N are not computable. Turing gave an important natural example.
Let H = {(e, x) : φe(x) ↓}. We call H the halting problem.
Let K = {e : φe(e) ↓}.

Theorem 7.6 (Unsolvability of the Halting Problem) Neither H nor
K is not recursive.

Proof If H were recursive then K would be recursive so it suffices to show
that K is not recursive. Suppose K is recursive. Let P be a program com-
puting the characteristic function of K. Consider the following program P̂ .
• On input x, run program P . If P outputs 0, then halt. If P outputs 1,

then go into an infinite loop.
Suppose I1, . . . , Im is the program P . Let Î1, . . . Îm be the same program

where every HALT has been replaced by J(1,1,m+ 1), then P̂ is

1) Î1
...

...

m) Îm
m+1) Z(2)
m+2) J(1,2,m + 4)
m+3) J(1,1,m + 2)
m+4) HALT

For some e, P̂ = Pe. Then

φe(x) =

{
0 x 6∈ K
↑ x ∈ K.

61



Is e ∈ K?
e ∈ K ⇔ φe(e) ↓⇔ e 6∈ K

a contradiction. Thus K is not recursive.

Definition 7.7 Let Tot = {e : φe is total}.
We argue that Tot is not recursive. Suppose it were, let g be the charac-

teristic function of Tot. Let

f(x) =

{
φx(x) + 1 if g(x) = 1
0 if g(x) = 0.

If g is computable, then f is computable. In fact

f(x) =
{
ψ(x, x) + 1 if g(x) = 1
0 otherwise

.

Thus for some e, f = φe. Also f is easily seen to be total. But then φe(e) ↓
and f(e) = φe(e) + 1, a contradiction.
We will give other natural examples in §8.
We will finish this section with an application to logic.

Theorem 7.8 (Church) The set of valid sentences of first order logic is
not recursive.

Proof For any P and any natural number n we will give a sentence θP
n such

that θP
n is valid if and only if P halts on input n. If we had a program to

decide if a sentence is valid, then we would have an algorithm to decide the
halting problem.

Suppose P uses registers R1, . . . , Rm. Let P = I1, . . . , Is. Let L =
{0, s, R} where s is a unary function symbol and R is an m+1-ary predicate.
We use sn(x) to denote

s(s(. . . (x) . . .))︸ ︷︷ ︸
n times

.

The intended interpretation is that sn(0) = n and R(sn1(0), . . . , snm(0), sj(0))
holds iff and only if one possible configuration of the machine is that Ri is
ni and the next instruction is j.
For each instruction Ii we write down an axiom τi where:

i) If Ii is Z(l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, 0, xl+1, . . . , xm, s

i+1(0))).

62



ii) If Ii is S(l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, s(xl), xl+1, . . . , xm, s

i+1(0))).

iii) If Ii is T (i, l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, xi, xl+1, . . . , xm, s

i+1(0))).

iv) If Ii is J(i, l, j), then τi is

∀x1, . . . , xm (R(x, s
i(0))→ ((xi = xl → R(x, sj(0))∧((xi 6= xl → R(x, si+1(0))

v) If Ii is HALT, then τi is

∀x R(x, si(0))→ R(x, 0).

The sentence
R(sn(0), 0, . . . , 0, s(0))

corresponds to the initial configuration on input n.

Let θP
n be

(R(sn(0), 0, . . . , 0, s(0)) ∧
s∧

i=1

τi)→ ∃x R(x, 0)

Then P halts on input n if and only if θP
n is valid. If validity were recursive

then we could decide the halting problem.

8 Recursively Enumerable and Arithmetic Sets

Definition 8.1 A set X ⊂ N is recursively enumerable if X is the range of
a partial recursive function.
Intuitively there is a recurisve function such that f(0), f(1), . . . enumer-

ates all of X.

Proposition 8.2 Let X be nonempty. The following are equivalent:
i) X is recursively enumerable;
ii) X = ∅ or X is the range of a total recursive function.
iii) there is a recursive Y ⊂ Nm+1 such that X = {y : ∃x (x, y) ∈ Y };
iii) X is the domain of a partial recursive function;

63



Proof
i )⇒ii) Suppose X 6= ∅ is the domain of the partial recursive function f .

Let x0 ∈ X. Let g : N2 → N by

g(x, s) =

{
f(x) if T (e, x, s)
x0 otherwise

where T (e, x, s) is the Kleene T-predicate asserting Pe halts on input x by
stage s. Then g is total recursive and the range of X is equal to the range
of g. If σ : N → N2 is a recursive bijection, then ĝ = g ◦ σ is the desired
function.

ii)⇒iii) Let X be the range of f . Let Y = {(x, y) : f(x) = y}. Then Y is
recursive and X = {y : ∃x f(x) = y}.

iii)⇒v) Let Y ⊂ Nm+1. Let σ : N → Nm be a recursive bijection. Let
f : N → N, by f(n) = µx (σ(x), n) ∈ Y . f is partial recursive and X is the
domain of f .

iii)⇒iv) Let X be the domain of f . Let

g(x) =

{
x f(x) ↓
↑ otherwise.

Then g is partial recursive and the range of g is the domain of f .

We next fix an enumeration of the recursively enumerable sets.

Definition 8.3 Let We = {x : φe(x) ↓} = domφe. Then W0,W1,W2, . . . is
an enumeration of the recursively enumerable sets.

The Halting set H = {(e, x) : φe(x) ↓} is the domain of the universal
function Ψ. Thus H is recursively enumerable. Similarly K = {e : φe(e) ↓}
is the domain of e 7→ ψ(e, e) and hence recursively enumerable. Thus there
are recursively enumerable sets which are not recursive.
Recursively enumerable sets arise naturally in logic when we take the set

of logical consequences of a theory. For the moment this will be informal
(since we are talking about sets of sentences rather than natural numbers).
They will me made precise in §11 when we talk about coding formulas.
Suppose T is a recusive set of sentences. Then Cn(T ) = {φ : T ` φ} is

recursively enumerable as Cn(T ) = {φ : ∃p p is a proof of φ from T}. By ii)
Cn(T ) is recursively enumerable.

64



Proposition 8.4 If A and B are recursively enumerable, then A ∪ B and
A ∩ B are recursively enumerable.

Proof We give intuitive arguments which can easily be made precise.
Suppose we have programs enumerating A and B. To enumerate A ∪B,

we enumerate x whenever we see x appear in either the enumeration of A or
the enumeration of B.
To enumerate A ∩ B, we enumerate x once we see x appear in the enu-

meration of both A and B.

Proposition 8.5 Every recursive set is recursively enumerable.

Proof Let f be the characteristic function for A and let

g(x) =

{
1 f(x) = 1
↑ f(x) 6= 0.

Then A = domg.

Proposition 8.6 A is recursive if and only if A and ¬A are recursively
enumerable.

Proof If A is recusive, then ¬A is recursive. Thus, by Proposition 8.5 both
A and ¬A are recursively enumerable.
If A and ¬A are recursively enumerable, then we can decide if x ∈ A as

follows: start enumerating A and ¬A. We will eventually find x in one of
the two lists. If x is enumerated into A, then output x. If x is enumerated
into ¬A, output no.

Corollary 8.7 ¬K and ¬H are not recursively enumerable.

Proof Otherwise K and H are recursive by 8.6.

Definition 8.8 A ≤m B (A is many-one reducible to B) if there is a total
recursive f : N→ N such that x ∈ A⇔ f(x) ∈ A.
If A ≤m B then B is at least as complicated as A. We can reduce problems

about A to probelms about B. We next show that the Halting Problem is
the most complicated recursively enumerable set.

Lemma 8.9 Suppose A ≤m B. If B is recursive, then so is A. Also if B is
recursively enumerable so is A.

65



Proof If B is recursive this is clear. Suppose B is recursively enumerable.
Suppose g is partial recursive and B = domg. Suppose f is total recursive
and n ∈ A iff f(n) ∈ B. Then A = {n : g(f(n)) ↓} a recursively enumerable
set.

Lemma 8.10 If A is recursively enumerable, then A ≤m H.

Proof Suppose A is the domain of φe. Let f(n) = (e, n). Then

n ∈ A ⇔ φe(n) ↓
⇔ Ψ(e, n) ↓
⇔ f(e, n) ∈ H.

Lemma 8.11 If A is recursively enumerable A ≤m K.

Proof If suffices to show H ≤m K. There is a total recursive function g
such that for all e, x, y, φg(e,x)(y) = φe(x). Intuitively g is a function which
on input e and x outputs a program P , such that on any input y, P runs Pe

on input x.
More formally let G(e, x, y) = Ψ(e, x). Apply the Parameterization

Lemma ( to obtain a total recursive g(e, x) such that φ(g(e,x)(y) = G(e, x, y) =
φe(x). Then (e, x) ∈ H if and only if for all y, φg(e,x)(y) ↓ if and only if
φg(e,x)(g(e, x)) ↓.
Thus (e, x) ∈ H if and only if g(e, x) ∈ K, so H ≤m K.
Thus A is recursively enumerable if and only if A ≤m H if and only if

A ≤m K.
Recall that Tot = {e : φe is total}. We will show that

Lemma 8.12 i) K ≤m Tot
ii) ¬K ≤m Tot
iii) Neither Tot nor ¬Tot is recursively enumerable.

Proof
i) Define a total recursive function f(x) such that for all e, φf(e)(y) =

φe(e). (The existence of such an f follows from the parameterization lemma.)
Then e ∈ K ⇔ f(e) ∈ Tot.

66



ii) Define a total recursive function f(x) such that

φf(e)(s) =

{
1 φe(e) has not halted by stage s
↑ otherwise.

Let

G(e, s) =

{
1 ¬T (e, e, s)
↑ otherwise

and apply the paramterization lemma to obtain a total recursive g such that
φg(e)(s) = G(e, s). Then e 6∈ K if and only if there is an s such that T (e, e, s)
if and only if there is an s such that φg(e)(s) ↑. Thus e ∈ ¬K ⇔ g(e) ∈ K.

iii) If Tot were recursively enumerable, then since ¬K ≤m Tot, ¬K would
be recursively enumerable and K would be recursive.
Note that if x ∈ A⇔ f(x) ∈ B, then x 6∈ A⇔ f(x) 6∈ B. So A ≤m B ⇔

¬A ≤m ¬B. Thus since K ≤m Tot, ¬K ≤m ¬Tot. If ¬Tot were recursively
enumerable then ¬K would be recursively enumerable, a contradiction.

Definition 8.13 We say that X ⊂ Nm is Σ1 if and only if there is a recursive
Y ⊂ Nm+n such that

X = {x ∈ Nm : ∃y (x, y) ∈ Y }.

We say that X ⊂ Nm is Πn if and only if ¬X is Σn. X is Σn+1 if and
only if there is a Πn set Y ⊂ Nm+k such that

X = {x : ∃y (x, y) ∈ Y }.

We say that X is ∆n if and only if X is Σn and X is Πn.
By 8.2 the Σ1 sets are exactly the recursively enumerable sets. Note that

the ∆1 sets are the recursive sets. It is easy to see that Σn ∪ Πn ⊆ ∆n+1.

Definition 8.14 We say that X is arithmetic if X ∈ ∪nΣn.

Proposition 8.15 i) If A0 and A1 are Σn (Πn), then A0 ∩ A1 and A0 ∪ A1
are Σn (Πn).

ii) If A ⊂ Nm+1 is Σn, then {x : ∃y (x, y) ∈ A} is Σn.
iii) If A ⊂ Nm+1 is Πn, then {x : ∀y (x, y) ∈ A} is Πn.
iv) If A ⊂ Nm+1 is Σn and f : Nm → N is total recursive, then {x : ∀y <

f(x) (x, y) ∈ A} is Σn.
v) If A ⊂ Nm+1 is Πn and f : Nm → N is total recursive, then {x : ∃y <

f(x) (x, y) ∈ A} is Πn.
vi) If A is Σn (Πn) and B ≤m A, then B is Σn (Πn).

67



Proof
i) Let Ai = {x : ∃y (x, y) ∈ Bi} where Bi is Πn−1 (or recursive if n = 1.

Then A0 ∪ A1 = {x : ∃y ((x, y) ∈ B0 ∪ B1)}. By induction B0 ∪ B1 is Πn−1.
Thus A0 ∪ A1 is Σn.
Similarly A0 ∩ A1 = {x : ∃y0∃y1 ((x, y0) ∈ B0 ∧ (x, y1 ∈ B1}.

ii) and iii) are similar.

iv) Suppose A = {(x, y) : ∃z(x, y, z) ∈ B}. Then ∀y < f(x)∃z(x, y, z) ∈
B iff and only if ∃σ(x, y, σ) ∈ B∗, where we think of σ as coding a finite
sequence (z0, . . . , zf(x)−1) and B

∗ asserts that forall y < f(x), (x, y, zy) ∈ B.
Since Πn−1 sets are closed under ∀y, B

∗ is Πn−1. Thus our set is Σn.

v) is similar

vi) Suppose A is Σn. Let f be a total recursive function such that

x ∈ B ⇔ f(x) ∈ A.

Let
Y = {(x, y) : y ∈ A ∧ f(x) = y}.

Then Y ∈ Σn and B = {x : ∃y (x, y) ∈ A} is Σn.

Examples

Below let W s
e = {x : φe(x) ↓ by stage s}. Clearly W

s
e is recursive.

• Tot = {e : φe is total} is Π2 as

e ∈ Tot⇔ ∀n∃sx ∈ W s
e .

• Fin = {e :We is finite} is Σ2 as

e ∈ Fin⇔ ∃n∀y∀s (y < x ∨ y 6∈ W s
e ).

• {(a, b, c, d, e) : ∃x, y∀z az3 − bxz = cx2 − dxy2 + ey3} is Σ2.

• {e : We is recursive} is Σ3 as We is recursive if and only there is an i
such that ¬We = Wi. Thus We is recursive iff and only if

∃i∀x ((x ∈ We ∨ x ∈ Wi) ∧ (x 6∈ We ∨ x 6∈ Wi)).

This is equivalent to

68



∃i∀x(∃s(x ∈ W s
e ∨ x ∈ W

s
i )︸ ︷︷ ︸

Σ1

∧∀s(x 6∈ W s
e ∨ x 6∈ W

s
i )︸ ︷︷ ︸

Π1︸ ︷︷ ︸
Π2

).

Thus {e : We is recursive} is Σ3.

Complete Sets

Definition 8.16 For Γ be Σn or Πn. We say that X is Γ-complete if X ∈ Γ
and for all Y ∈ Γ, Y ≤m X.
By 8.11 K and H are Σ1-complete.

Proposition 8.17 Tot is Π2-complete.

Proof Let X be Π2. Then there is a recurisve R(x, y, z) such that

x ∈ X ⇔ ∀y∃z R(x, y, z).

Let f(x, y) =

{
1 ∃z R(x, y, z)
↑ otherwise

. Clearly f as computable as on input

x, y we search for a z such that R(x, y, z). If there is one we will evenutally
find it and halt. If not we will search forever.
By the parameterization theorem there is a recursive function k(x) such

that
φk(x)(y) = f(x, y).

But then x ∈ X if and only if φk(x) is total.

Proposition 8.18 Fin is Σ2-complete.

Proof
Let X ∈ Σ2. Suppose x ∈ X if and only if ∃y∀z R(x, y, z) where R is

recursive.
Let

f(x, y) =

{
1 ∀w ≤ y∃z ¬R(x, w, z)
↑ otherwise.

By the parameterization theorem there is a total recursive g such that φg(x)(y) =
f(x, y).

69



Then Wg(x) = {y : ∀w < y∃z ¬R(x, w, z)}. Thus x ∈ X if and only if
g(x) ∈ Fin.

Definition 8.19 Let U ⊂ N2. For e ∈ N, let Ue = {x : (e, x) ∈ U}. We say
that U is Γ-universal if U ∈ Γ and for any X ∈ Γ, there is an e such that
X = Ue.

Clearly every Γ-universal set is Γ-complete

Lemma 8.20 For Γ = Σn or Πn, there is UΓ which is Γ-universal.

Proof Let UΣ1
= {(e, n) : n ∈ We} = {(e, n) : Ψ(e, n) ↓} is Σ1 and clealy

universal.
If UΣn

is universal for Σn then ¬UΣn
is universal for Πn.

Let UΠn
be universal Πn. Let π : N2 → N be a recursive bijection. Then

{(e, n) : ∃y(e, π(x, y)) ∈ UΠn
}.

is universal Σn+1.

Proposition 8.21 The universal Σn set is not Πn.

Proof Let U be the universal Σn set. Let V = {e : (e, e) 6∈ U}. If U were Πn

then V would be Σn. In that case there would be an e0 such that V = Ue0
.

But then
e0 ∈ V ⇔ (e0, e0) 6∈ U ⇔ e0 6∈ Ue0

⇔ e0 6∈ V.

Thus Σn ⊃ ∆n and Πn ⊃ ∆n. This gives the following picture of the
arithemtic hierarchy.

©
©
©
©
©
©
©
©
©
©
©©H

H
H
H
H
H
H
H
H
H
HH

©
©
©
©
©
©
©
©
©
©
©©H

H
H
H
H
H
H
H
H
H
HH

...

∆1

Σ1 Π1

∆2

Σ2 Π2

70


