Math 502 Metamathematic I

Problem Set 2

Due: Wednesday September 28

Problems marker with a † are more dificult or require a bit more algebra and **optional**.

- 1) Let T and T' be \mathcal{L} -theories with $T' \subseteq T$. We say that T' axiomatizes T if every model of T' is a model of T. Suppose T' axiomatizes T. Prove that $T \models \phi$ if and only if $T' \models \phi$ for all \mathcal{L} -sentences ϕ .
- 2) Let ϕ be a forumla where the only free variable is v. Let ψ be a sentence. [Recall that if Γ is a set of formulas. Then $\Gamma \models \phi$ if and only if whenever \mathcal{M} is a structure and σ is an assignment making all of the sentences in Γ true, then $\mathcal{M} \models_{\sigma} \phi$.]
 - a) Show that if $\psi \models \phi$. Then $\psi \models \forall v \phi$.
 - b) Suppose $\phi \models \psi$. Then $\exists v \ \phi \models \psi$.
- 3) Let $\mathcal{L} = \{+, 0\}$.
 - a) Prove that $Th(\mathbb{Z}) \neq Th(\mathbb{Q})$.
 - b)[†] Prove that $Th(\mathbb{Z}) \neq Th(\mathbb{Z} \oplus \mathbb{Z})$.
- 4) a) Let \mathcal{L} be the language $\{+,0\}$ and consider the structure \mathcal{R} with universe \mathbb{R} where + is interpreted as the usual addition and 0 as zero. Show that there is no formula $\phi(v,w)$ such that $\mathcal{R} \models \phi(a,b)$ if and only if a < b for all $a,b \in \mathbb{R}$. [**Hint:** Find a and b and an automorphism F of \mathbb{R} such that a < b but F(a) > F(b).]
- b) Let \mathcal{L} be the language of rings $\{+,\cdot,0,1\}$ and let \mathcal{R} be \mathbf{R} with the usual interpretation. Find a formula $\phi(v,w)$ such that a < b iff $\mathcal{R} \models \phi(a,b)$.
- 5) If ϕ is a sentence, the *spectrum* of ϕ is the set of all natural numbers n such that there is a model of ϕ with exactly n elements.
- a) Let $\mathcal{L} = \{E\}$ where E is a binary relation. Write down a sentence ϕ asserting that E is an equivalence relation and every equivalence class has exactly three elements. Show that the spectrum of ϕ is $\{n > 0: 3 \text{ divides } n\}$.

b) Let $\mathcal{L} = \{P, Q, f\}$ where P and Q are unary predicates and f is a binary function. Let ϕ be the conjuction of:

```
\exists x \exists y \ x \neq y \land P(x) \land P(y)
\exists x \exists y \ x \neq y \land Q(x) \land Q(y)
\forall z \exists x \exists y \ P(x) \land Q(y) \land f(x,y) = z
\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ [(P(x_1) \land P(x_2) \land Q(y_1) \land Q(y_2) \land f(x_1, y_1) = f(x_2, y_2)) \rightarrow (x_1 = x_2 \land y_1 = y_2)]
```

Show that the spectrum of $\phi = \{n > 3 : n \text{ is not prime}\}.^1$

- c) Find a sentence with the spectrum $\{n > 0 : n \text{ is a square } \}$.
- d)[†] Find a sentence with the specturm $\{p^n : p \text{ prime } n > 0\}$.
- e)^{††} Find a sentence with spectrum $\{p : p \text{ is prime}\}.$
- f)^{†††} Prove that $X \subseteq \mathcal{N} \setminus \{0\}$ is a spectrum if and only if X is in recognizable in nondeterministic exponential time.²

¹Another sentence with the same spectrum is the sentence in the language of rings asserting that we have a commutative ring **with** zero divisors

²The question about whether the complement of a spectrum is a spectrum is an old open question. By this result it is equivalent to the question about whether nondeterministic exponential time is co-nondeterministic exponential time.