Due: Wednesday September 28

Problems marker with a † are more difficult or require a bit more algebra and optional.

1) Let T and T' be L-theories with $T' \subseteq T$. We say that T' axiomatizes T if every model of T' is a model of T. Suppose T' axiomatizes T. Prove that $T \models \phi$ if and only if $T' \models \phi$ for all L-sentences ϕ.

2) Let ϕ be a formula where the only free variable is v. Let ψ be a sentence.
[Recall that if Γ is a set of formulas. Then $\Gamma \models \phi$ if and only if whenever M is a structure and σ is an assignment making all of the sentences in Γ true, then $M \models \sigma(\phi)$.

a) Show that if $\psi \models \phi$ then $\psi \models \forall v \phi$.

b) Suppose $\phi \models \psi$ then $\exists v \phi \models \psi$.

3) Let $L = \{ +, 0 \}$.

a) Prove that $\text{Th}(\mathbb{Z}) \neq \text{Th}(\mathbb{Q})$.

b)† Prove that $\text{Th}(\mathbb{Z}) \neq \text{Th}(\mathbb{Z} \oplus \mathbb{Z})$.

4) a) Let L be the language $\{ +, 0 \}$ and consider the structure R with universe \mathbb{R} where $+$ is interpreted as the usual addition and 0 as zero. Show that there is no formula $\phi(v, w)$ such that $R \models \phi(a, b)$ if and only if $a < b$ for all $a, b \in \mathbb{R}$. [Hint: Find a and b and an automorphism F of \mathbb{R} such that $a < b$ but $F(a) > F(b)$.

b) Let L be the language of rings $\{ +, \cdot, 0, 1 \}$ and let R be \mathbb{R} with the usual interpretation. Find a formula $\phi(v, w)$ such that $a < b$ iff $R \models \phi(a, b)$.

5) If ϕ is a sentence, the spectrum of ϕ is the set of all natural numbers n such that there is a model of ϕ with exactly n elements.

a) Let $L = \{ E \}$ where E is a binary relation. Write down a sentence ϕ asserting that E is an equivalence relation and every equivalence class has exactly three elements. Show that the spectrum of ϕ is $\{ n > 0 : 3 \text{ divides } n \}$.
b) Let $\mathcal{L} = \{P, Q, f\}$ where P and Q are unary predicates and f is a binary function. Let ϕ be the conjunction of:

\[\exists x \exists y \ x \neq y \land P(x) \land P(y) \]
\[\exists x \exists y \ x \neq y \land Q(x) \land Q(y) \]
\[\forall z \exists x \exists y \ P(x) \land Q(y) \land f(x, y) = z \]
\[\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ [(P(x_1) \land P(x_2) \land Q(y_1) \land Q(y_2) \land f(x_1, y_1) = f(x_2, y_2)) \rightarrow (x_1 = x_2 \land y_1 = y_2)] \]

Show that the spectrum of $\phi = \{n > 3 : n \text{ is not prime}\}$.\(^1\)

c) Find a sentence with the spectrum $\{n > 0 : n \text{ is a square}\}$.

d)† Find a sentence with the spectrum $\{p^n : p \text{ prime } n > 0\}$.

e)†† Find a sentence with spectrum $\{p : p \text{ is prime}\}$.

f)††† Prove that $X \subseteq \mathbb{N} \setminus \{0\}$ is a spectrum if and only if X is in recognizable in nondeterministic exponential time.\(^2\)

\(^1\)Another sentence with the same spectrum is the sentence in the language of rings asserting that we have a commutative ring with zero divisors.

\(^2\)The question about whether the complement of a spectrum is a spectrum is an old open question. By this result it is equivalent to the question about whether nondeterministic exponential time is co-nondeterministic exponential time.