1) a) Write register machine program to compute \(\max(x, y) \).
 b) Give primitive recursive functions \(j(x, y, s) \) and \(g_i(x, y, s) \) such that if the program from a) is given input \(x \) and \(y \), \(j(x, y, s) \) is the next instruction and \(g_i(x, y, s) \) is the contents of register \(i \) at time \(s \).

2) Write a register machine program to compute

\[
f(x, y) = \begin{cases}
0 & \text{if } y = 0 \\
\lfloor x/y \rfloor & \text{if } y \neq 0
\end{cases}
\]

where \(\lfloor r \rfloor \) is the greatest integer \(\leq r \) for \(r \in \mathbb{R} \).

3) Prove that \(\max(x, y) \) and \(\text{lcm}(x, y) \) are primitive recursive, where \(\text{lcm}(x, y) \) is the least common multiple of \(x, y \).

4) a) Suppose \(P(\bar{x}, y) \) is a primitive recursive predicate and \(g(\bar{x}) \) is a primitive recursive function. Define \(f(\bar{x}) = 0 \) if there is no \(n \leq g(\bar{x}) \) such that \(P(\bar{x}, n) = 1 \). Otherwise \(f(\bar{x}) \) is the least \(n \leq g(\bar{x}) \) such that \(P(\bar{x}, n) = 1 \). Prove that \(f \) is primitive recursive.
 b) Prove that the function \(f \) from problem 2 is primitive recursive.