Math 504 Set Theory I Problem Set 3

Due Monday February 11

1) Recall that we defined the function $\alpha \mapsto \aleph_{\alpha}$ as follows:

$$\aleph_{\alpha} = \begin{cases} \omega & \text{if } \alpha = 0\\ \aleph_{\beta}^{+} & \text{if } \alpha = \beta + 1\\ \sup\{\aleph_{\beta} : \beta < \alpha\} & \text{if } \alpha \text{ is a limit ordinal} \end{cases}$$

a) Prove that for every cardinal κ there is an ordinal α with $\kappa = \aleph_{\alpha}$.

b) Suppose κ is weakly inaccessible (i.e., κ is a regular limit cardinal), then $\kappa = \aleph_{\kappa}$.

2) Prove that if $f: A \to B$ is surjective, there is an injective $g: B \to A$ such that $f \circ g$ is the identity.

3) Prove that

$$^{A}(^{B}C) \approx ^{(A \times B)}C.$$

Conclude that $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda\mu}$ for all cardinals κ, λ, μ . [Hint: If $f : A \times B \to C$, let $G_f : A \to^B C$ such that

$$G_f(a)(b) = f(a, b).$$

Prove that $f \mapsto G_f$ is a bijection.]

4) Prove the following rules for cardinal exponentiation:

i) If $\alpha \leq \beta$, then $\aleph_{\alpha}^{\aleph_{\beta}} = 2^{\aleph_{\beta}}$.

ii) If there is $\gamma < \alpha$ with $\aleph_{\gamma}^{\aleph_{\beta}} \ge \aleph_{\alpha}$, then $\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\gamma}^{\aleph_{\beta}}$.

iii) If $\alpha > \beta$, $\aleph_{\gamma}^{\aleph_{\beta}} < \aleph_{\alpha}$ for all $\gamma < \alpha$ and either \aleph_{α} is regular or $cf(\aleph_{\alpha}) > \aleph_{\beta}$, then

$$\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha}.$$

iv) If $\alpha > \beta$, $\aleph_{\gamma}^{\aleph_{\beta}} < \aleph_{\alpha}$ for all $\gamma < \alpha$ and $cf(\aleph_{\alpha}) \le \aleph_{\beta} < \aleph_{\alpha}$, then

$$\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha}^{\mathrm{cf}(\aleph_{\alpha})}$$