Due Friday April 4

1) a) Suppose $L \models \kappa$ is a cardinal. Show that $L_\kappa \models$ comprehension.

 b) Suppose $L \models \kappa$ is a regular cardinal. Then $L_\kappa \models$ Replacement.

 c) Suppose $L \models \kappa$ is a limit cardinal. Then $L_\kappa \models$ Power Set.

2) Assume $V = L$. Let $X \prec L_{\omega_1}$.

 a) Show $\omega \in X$.

 Fix $x \in X$.

 b) Show that there is $f \in L_{\omega_1}$ such that $f : \omega \to x$ is onto.

 c) Let $f : \omega \to x$ be $<_L$-least in L_{ω_1} such that f is surjective. Argue that $f \in X$ and conclude that $x \subseteq X$.

 d) Conclude that X is transitive and must be equal to L_α for some $\alpha \leq \omega_1$.

 [Hint: Recall that the Mostowski Collapse is the identity on transitive sets.]

Note: The Condensation Lemma tells us that $X \cong L_\beta$ for some $\beta \leq \omega_1$. But we have, in this case, proved the much stronger result that X is already some L_β.

1