Math 507: Model Theory II

Exercises

ω -stable groups

- 1) Let $\mathcal{L} = \{+, 0, G_0, G_1, \ldots\}$. Let T be the theory asserting that we are in an abelian group where every element has order 2, G_0 is the whole group and G_{i+1} is an index 2 subgroup of G_i for all i. Prove that T is superstable but not ω -stable. How many countable models does T have?
- 2) Give full details of the proof that in a superstable group there is no infinite descending sequence of definable subgroups $G_0 > G_1 > \dots$ where $[G_i : G_{i+1}]$ is infinite for all i.
- 3) Let $\mathcal{L} = \{+, 0, G_0, G_1, \ldots\}$. Let T be the theory asserting that we are in a divisible abelian group, each G_i is a divisible subgroup and G_{i+1} is an infinite index subgroup of G_i for all i. Prove that T is stable but not superstable.
- 4) Let G be a group. Suppose H_1 and H_2 are finite index subgroups of G, prove that $H_1 \cap H_2$ is also a finite index subgroup.
- 5) Suppose $G \prec H$ and $\phi(v)$ defines G^0 . Show that $\phi(v)$ defines H^0 .
- 6) Suppose G is stable and $(H_a : a \in A)$ is a definable family of subgroups closed under finite intersection, then $\bigcap_{a \in A} H_a$ is definable.
- 7) Show that if G is connected and $H \triangleleft G$ is definable, then G/H is connected.
- 8) Suppose G is connected and $\sigma: G \to G$ is a definable group homomorphism with finite kernel, show that σG is surjective.
- 9) Let $\psi(v)$ define Stab(p), let $G \prec H$ and let q be the nonforking extension of p to H, show that $\psi(v)$ defines Stab(q) in H.
- 10) Suppose a and b realize generic types of G and $a \downarrow_G b$. Show that ab realizes a generic of G.
- 11) Suppose $p, q \in S_1(G)$ are generic. Show that there is $g \in G$ such that q = gp (i.e., G acts transitively on the generic types).
- 12) Suppose $(K, +, -, \cdot, 0, 1)$ is an infinite field and $\operatorname{Th}(K)$ has quantifier elimination (in the language of rings). Prove that $\operatorname{Th}(K)$ is ω -stable and conclude that K is algebraically closed.

- 13) Suppose $X \subseteq G$ is indecomposable and $g \in G$. Show that gX and X^g are indecomposable.
- 14) Suppose G is ω -stable and $A \subset G$ is definable. Prove that there are disjoint indecomposable X_1, \ldots, X_n such that $A = X_1 \cup \ldots \cup X_n$. [Hint: Build a finite branching tree of definable sets X_{σ} and definable subgroups H_{σ} . Such that if X_{σ} is not indecomposable, $1 < |X_{\sigma}/H_{\sigma}| = n < \infty$ and let $X_{\sigma,0}, \ldots, X_{\sigma,n-1}$ are the cosets of X_{σ}/H_{σ} and $H_{\sigma} \subset H_{\tau}$ for $\tau \subset \sigma$.]
- 15) a) Show that if G is a finite Morley rank group and $A \subset G$ is definable and infinite with |A| < |G|, then there is a normal $H \triangleleft G$ such that |H| < |G|. [Hint: Use 14 to show that without loss of generality A is indecomposable and $1 \in A$. Consider the group generated by $(A^g : g \in G)$.]
 - b) Prove that a simple group of finite Morley rank is \aleph_1 -categorical.
- 16) Suppose that $(K, +, \cdot, ...)$ is a field of finite Morley rank and $X \subseteq K$ is an infinite definable set.
- a) Show that there are $a_1, \ldots, a_n \in K$ such that $K = a_1X + a_2X + \ldots + a_nX$. [Hint: By 14) we may assume that X is indecomposable. Let $x \in X$ and Y = X x. Show that the additive subgroup A generated by $\{aY : a \in K\}$ is definable. Argue that A = K.]
- b) Show that if the language is countable, then the theory of K is categorical in all uncountable powers.
- 17) Let F be an infinite field, and let G be a group of automorphisms of F such that the action of G on F has finite Morley rank. Show that $G = \{1\}$. [Hint: Without loss of generality, G is Abelian. Using Exercise ??, F has characteristic p > 0 and for all $\sigma \in G \{1\}$, $Fix(\sigma)$, the fixed field of σ , is finite. Show that if $\sigma \in G \{1\}$ then for all n > 1, $\sigma^n \neq 1$ and $|Fix(\sigma^n)| > |Fix(\sigma)|$. Thus, if $G \neq \{1\}$, then G is infinite. On the other hand, if G is infinite and σ is generic, so is σ^n . Derive a contradiction.]
- 18) (NIP DCC) Work in a structure with NIP. Suppose we have a formula $\phi(x, \overline{y})$ and \mathcal{H} is a family of definable subroups such that each $H \in \mathcal{H}$ is defined by $\phi(x, \overline{a})$ for some \overline{a} . Prove that there is a number m such that if $H_1, \ldots, H_n \in \mathcal{H}$, then there are $i_1, \ldots, i_m \leq n$ such that

$$H_1 \cap H_2 \cap \ldots \cap H_n = H_{i_1} \cap \ldots \cap H_{i_m}.$$

[Hint: If not then for any n we can find H_1, \ldots, H_n such that for all j there is $b_j \cap_{i \neq j} H_i$ with $b_j \notin H_j$. For $I \subset \{1, \ldots, n\}$ consider $b_I = \prod_{i \in I} b_i$. For which i is $b_I \in H_i$?]

- 19) (Another stable DCC) a) Work in a stable structure and let \mathcal{H} be as in 18). Show that $\bigcap_{H \in \mathcal{H}} H$ is definable.
 - b) Give an example of an unstable NIP theory where a) fails.
- 20) Suppose we have a stable faithful action of a group G on a strongly minimal set X.
- a) Show that there is $a_1, \ldots, a_n \in X$ such that $Stab(a_1) \cap \ldots \cap Stab(a_n) = \{1\}$. [Hint: Use 19).]
 - b) Conclude that $g \mapsto (g(a_1), \dots, g(a_n))$ is injective.
- c) Conclude that G has Morley rank at most n. [Hint: recall that we know X^n has Morley rank n.]
- 21) Let T be stable (or even simple) in a countable language. Suppose $(b_{\alpha}: \alpha < \omega_1)$ is a Morley sequence over A. Then for any c there is $\alpha < \omega_1$ such that $c \downarrow_A b_{\alpha}$. [Also argue that if T is ω -stable we can replace ω_1 with ω .]
- 22) Let M be ω -stable, X and infinite \emptyset -definable set and $p \in S(A)$ a stationary, complete type.
- a) Suppose there is \bar{b} and some c realizing p such that $c \in \operatorname{dcl}(\bar{b}, X)$ and $c \downarrow_A \bar{b}$. Show that p is X-intenal. [Hint: Let $B = (\bar{b}_0, \bar{b}_1, \ldots)$ be a Morley sequence for $\operatorname{tp}(\bar{b}/A)$. Let d realize p. Use 21) to find i such that $d \downarrow_A \bar{b}_i$. Conclude that $d \in \operatorname{dcl}(\bar{b}_i, X)$ and $p(\mathbb{M}) \subset \operatorname{dcl}(B, X)$.]
 - b) Extend the result to non-stationary types.

Geometry of Strongly Minimal Sets

- 23) a) Prove Lemma 8.1.3.
 - b) Prove Lemma 8.1.4
 - c) Prove Lemma 8.1.6
- 24) a) Prove that if (X, cl) is a modular pregeometry, then any localization is modular.
- b) Prove that (X, cl) is locally modular if and only if whenever A and B are closed sets with dim $(A \cap B) > 0$ we have

$$\dim (A, B) = \dim (A) + \dim (B) - \dim (A \cap B).$$

25) Suppose K is an algebraically closed field x, a_0, \ldots, a_n are algebraically independent $\sum_{i=0}^{n} a_i x^i = y$. Prove that y is not algebraic over k(x) for k any proper subfield of $\operatorname{acl}(a_0, \ldots, a_n)$ of transcendence degree at most n. Use

this fact to give a second proof that algebraically closed fields are not locally modular.

26) Suppose D is strongly minimal and $\phi(x, y, \overline{a})$ defines a strongly minimal subset of D^2 . If $\operatorname{tp}(\overline{b}) = \operatorname{tp}(\overline{a})$. Let $C_{\overline{b}} = \{(x, y) \in D^2 : \phi(x, y, \overline{b})\}$. Show that there is an m formula such that if $\operatorname{tp}(\overline{b}_1) = \operatorname{tp}(\overline{b}_2) = \operatorname{tp}(\overline{a})$, then

$$C_{\overline{b}_1} \triangle C_{\overline{b}_2}$$
 is finite $\Leftrightarrow |C_{\overline{b}_1} \cap C_{\overline{b}_2}| \le m$.

- 27) Suppose M is constructible over A and $|M \setminus A| = \aleph_1$. Prove that there is a construction $(a_{\alpha} : \alpha < \omega_1)$ of M over A. [Hint: Recall that any finite set is contained in a finite sufficient set.]
- 28) Let $\mathcal{L} = \{E_{\alpha} : \alpha < \omega_1\}$. Let T be the theory asserting that each E_{α} is an equivalence relation, $E_{\beta} \subset E_{\alpha}$ for $\alpha < \beta$, and if $\alpha < \beta$, then each E_{α} class is split into infinitely many E_{β} -classes. Prove that T has quantifier elimination and that T is λ -stable, whenever $\lambda^{\aleph_1} = \lambda$.
- 29) Let T be as in 28). Let $A \subset \mathbb{M}$ and let $\phi(v, \overline{a})$ be a satisfiable \mathcal{L}_A -formula that is not satisfied in A. Assume further that ϕ is a conjunction of atomic and negated atomic formulas.
- a) Suppose there is $\alpha < \omega_1$ such that there is $a^* \in \mathbb{A}$ with $\phi(v, \overline{a}) \models vE_{\alpha}a^*$. Show that there is a maximal such α . Let $\theta(v, \overline{a})$ is the formula

$$vE_{\alpha}a^* \wedge \bigwedge_{a \in \overline{a}} \neg (vE_{\alpha+1}a).$$

Show that $\theta(v, \overline{a}) \models \phi(v, \overline{a})$ and $\theta(v, \overline{a})$ isolates a type over A.

b) If there is no $a^* \in \overline{a}$ and $\alpha < \omega_1$ such that $\phi(v, \overline{a}) \models vE_{\alpha}a$, show that

$$\bigwedge_{a\in\overline{a}}\neg(vE_0a)$$

isolates a type over A consistent with $\phi(v, \overline{a})$.

c) Conclude that the isolated types in $S_1(A)$ are dense for any A.

You can also do the following problems from the text:

5.5.9

6.6.33

6.6.34

6.6.35