3 Extensions of Rings and Valuations

When studying the model theory of certain theories of valued fields our first step
will usually be to prove quantifier elimination in an appropriate language. Proofs
of quantifier elimination in algebraic theories usually require some algebraic
extension results. That is particular true in valued fields. In this section we
will prove some basic results and then will use them in §4 to begin the study
of the model theory of algebraically closed valued fields. In §5 we will focus on
extension results for henselian valued fields.

For more details on some of the background results from commutative al-
gebra see, for example [12] or [19]. All of the results we will be proving on
extensions of valuations can be found in [13]. To be careful we will tend to state
most results for domains even though many are true in more generality.

3.1 Integral extensions

We begin by reviewing some facts about the integral extensions.
Recall that a domain A is local if and only if A has a unique maximum ideal
m which is exactly the nonunits of A.

Definition 3.1 If A C B are domains, we say that b € B is integral over A, if
there are ag,...,a,_1 € A such that

B 4+ ap " P4+ +ab+ag=0

for some n. We say that B is integral over A if every element of B is integral
over A.

Lemma 3.2 Let A C B be domains and b € B. The following are equivalent.
i) b is integral over A.
ii) Alb] is a subring of B that is a finitely generated A-module.
i11) A[b] is contained in a finitely generated A-module.

Proof i) = ii) If b™ = .7 "a,b" where ag,...,am_1 € A. Then A[b] is

generated over A by 1,b,...0m L.

il) = iii) is clear.

iii) = i) Let x1,..., 2z generate a submodule containing A[b] over A. For
t=1,...m we can find a;1,...,a;m,m € A such that

m
b:z:i: E A, §Tj.
Jj=1

Let M be the matrix

aLl*b ai 2 al.m
) )
as 1 a2 — b ... a2,m
Q.1 A2 coe Qmm — b

)
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i.e, the matrix with a;; — b along the diagonal and a; ; everywhere else. Then
M(z1,...,2m)T =0. Let Adj(M) be the adjoint of M. Then

Adj(M)M (21, ..., 2,)" = (det Mxy, ... det Mz,,)T = (0,...,0)T .2
Thus we must have det M = 0. But det M is a monic polynomial in A[p]. O

Corollary 3.3 If A C B C C are domains, B is an integral extension of A and
C is an integral extension of B, then C is an integral extension of C.

Proof Let ¢ € C. There are by, ...,b,—1 € B such that ¢” +>_ bict = 0. Then
Albo, ..., bp—1,] is a finitely generated A-module and c is integral over A. O

The next lemma is a simple but useful tool.

Lemma 3.4 If A is a local subring of a field K, v € K* and 1 = ap+%-+... %

where ag € m and ay,...,a, € A, then x is integral over A.
Proof Then (1 —ag)z™ —ajz" ' —--- —a, = 0. Since ag € m, 1 —ag ¢ m.
Since A is local, 1 — ag is a unit and x is integral over A. O

Lemma 3.5 If A C B are domains and B is integral over A, then A is a field
if and only if B is a field.

Proof (<) Suppose B is a field and @ € A is nonzero. Then there are
€0y -+ Cm—1 € A such that

m—1
(a™hH)™ + Z cn(a™H" =0
n=0
Multiplying by a™~! we see that
m—1
al=— Z ca™ e A
n=0

Thus A is a field.

(=) Suppose A is a field and b € B is nonzero. Then, by Lemma 3.2 A[b] is
a finitely generated vector space over A. The map z — bz is an injective linear
transformation of A[b] and, since A[b] is a finite dimensional vector space must
be surjective. Thus there is z € A[b] with zb = 1. O

Definition 3.6 Let A C B be domains and let P C A, Q C B be prime ideals.
We say that Q lies over P if ANQ = P.

Corollary 3.7 Let A C B be domains with B integral over A and let P C A
and @ C B be prime ideals such that Q lies over P. Then P is mazimal if and
only if Q is maximal.

2Remember Cramer’s Rule!
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Proof Since P = ANQ we can view B/Q as an integral extension of A/P. By
the last lemma, A/P is a field if and only if B/Q is a field. O

Lemma 3.8 Suppose A C B are domains, B is integral over A, Q) is a prime
ideal in B and P = QN A. Then then BAp is integral over Ap.

Proof Consider b/t where b € B and t € A\ Q. There are ag,...,am—1 € A
with ™ + 3" a;b" = 0. But then

(b/1)™ + > (ai /") (b/t)) = 0.
O

Lemma 3.9 Suppose A C B are domains, B is integral over A, P C A is a
prime ideal and Q1 C Q2 are prime ideals in B lying over P. Then Q1 = Q3.

Proof Consider the localization Ap and the integral extension BAp. Then
Q1Ap and Q2Ap are prime ideals of BAp lying over PAp. But PAp is max-
imal. Thus each Q;Ap is maximal and we must have Q1Ap = Q2Ap. But if
x € Qa\ Q1, then x & Q1Ap. If we did have x = ¢/t for some ¢ € Q1 and
t € A\ P. Then zt € Q; and since x € @1 and @ is prime, we would have
t € Q1N A= P, a contradiction. O

Theorem 3.10 (Lying Over Theorem) Suppose A C B are domains, B is
integral over A and P is a prime ideal of A. There is a prime ideal Q of B such
that ANQ = P.

Proof First, suppose A was a local ring then P is the unique maximal of A.
If @ C B is any maximal idea extending P, then, by Corollary 3.7, Q@ N A is
maximal. But then Q = P.

In general, we pass to the localization Ap. As above, if Qg is any maximal
ideal in BAp, then Qo N Ap = PAp. So QoN A= P. Let Q = Q¢ N B. Then
QN A= P and, since Qg is prime, () is prime. O

3.2 Extensions of Valuations

Theorem 3.11 (Chevalley’s Theorem) Suppose A is a subring of a field K
and P C A is a prime ideal. Then there is a valuation ring O of K with
ANMp=P

Proof Replacing A by Ap we may assume that A is a local ring with maximal
ideal P. Let P be the set of all local subrings B of K with mp N A = P.
Clearly P is partially ordered by C and if (B; : ¢ € I) increasing chain in P then
U,e; Bi is an upper bound. Thus by Zorn’s Lemma, P has maximal elements.
Let O € P be maximal. Let m be the maximal ideal of O. We will argue that
O is a valuation ring.
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Suppose z,1/xz € K\ O. If x is integral over O, then we can find a maximal
ideal of O[z] lying over m contradicting the maximality of O € P. Thus z is
not integral over O.

By Lemma 3.4, 1 ¢ mOJ[1/z]. Thus there is a maximal ideal @ of O[1/x]
that lies over m, contradicting the maximality of O. Thus for all x € K at least
one of z and 1/z is in O. O

Exercise 3.12 Show that if v : KX — TI'is a valuation and L D K is an
extension field, there is IV D T and w : Lx — I’ extending v.

integral closures and valuations

Definition 3.13 We say that A is integrally closed in B if no element of B\ A
is integral over A. We say that A is integrally closed if it is integrally closed in
its fraction field.

The integral closure of A is the smallest integrally closed ring containing A.

Lemma 3.14 If (K,v) is a valued field, then the valuation ring O is integrally
closed.

Proof Supposeb € K and b"+a,_1b" '+ - -4+a,b+ag = 0 where ag, ..., ap_1 €
O. If b ¢ O, then v(b) < 0 and

v(a;b") = v(a) +iv(b) < nv(b)

since v(a;) > 0 for all . Thus v(b" + ap_16" "1+ -+ +a1b+ag) = nv(b) <0, a
contradiction. O
We can use valuation rings to find the integral closure of a local subring.

Lemma 3.15 Let A be a local subring of a field K with maximal ideal m. The
integral closure of A € K is the intersection of all valuation rings O C K with
me lying over m.

Proof Suppose x € K be nonintegral over A. Then by Lemma 3.4, 1 ¢
mA[l/z] + L A[1/z]. Thus we can find a maximal ideal Q of A[1/z] lying over
m with 1/2 € Q. Let O D A[1/z] be a maximal local subring of K. Then, as in
the proof of Theorem 3.11, O is a valuation ring, mep lies over m and 1/z € mp.
Thus « € O. O

Algebraic Extensions

Suppose K C L are fields and v is a valuation on K. Then v restricts to a
valuation on K. Let Or, ', kr and O, 'k, ki denote the respective valuation
rings, value groups and residue fields.

Lemma 3.16 Then 'y is contained in the divisible hull of T and ky, is an
algebraic extension of ki .
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Proof Let x € L\ K. There are ao,...,a, € K such that Zaixi = 0. There
must be i # j such that v(a;z®) = v(ajz?). But then v(z) = 2ed=v),

Jj—1
Suppose x € L and the residue Z € kj, \ kx. There is a polynomial f[X] €
Ok (X) such that f(z) = 0. Let f(X) = Y a;X’. Suppose a; has minimal

value and let g(X) = > 2 X% Then g(x) = 0 and g(X) is not identically zero
as some coefficient is 1. Thus T is algebraic over K. O

Corollary 3.17 i) If k is an algebraically closed field, T is a divisible ordered
abelian group and K = k((T")), then K is algebraically closed.

it) If k is a real closed, T is a divisible ordered abelian group and K = k((T),
then K is real closed.

Proof If K is not algebraically closed field let L/K be an algebraic extension,
then we can extend the valuation to L and since ky,/k is algebraic and I'(L) is
contained in the divisible hull of I'(K) by Exercise 1.8 (see also Lemma 3.16).
But k is algebraically closed and T' is divisible, thus L/K is immediate. But
we saw in Lemma 2.46 that Hahn fields have no proper immediate extensions.
Thus K is algebraically closed.

ii) If k is real closed, then k&((T)) is a degree 2 algebraic extension of
E((T)). Thus by the work of Artin and Schreier (see for example [19] XI §2
Proposition 3), k((T")) is real closed. O

We will prove much more general of these results later.

If L/K is a finite algebraic extension and [L : K| = d, then the argument
above shows that [I'y : T'x] < d and [k, : kx] < d. We will prove a much
sharper bound. We let e = [I'f, : T'x] be the ramification index and f = [kr, :
kk] be the residue degree . Note that if e = f = 1, then L is an immediate
extension of K.

Theorem 3.18 (Fundamental Inequality) If L/K is a finite algebraic ex-
tension of degree d then ef < d.

Proof Choose z1,...,2, € L such that v(z1),...,v(z,) represent distinct
cosets of I'r,/T'x. Choose yi,...,yy € L such that 7,...,7; is a basis for
kr/kk. It suffices to show that (x;y; : i < e,j < f) are linearly independent
over K.

Suppose

Z A, T:Y5 = 0

i<ej<f
where not all a; ; = 0. Pick 7 and j such that

U(aféxf) = min{v(ai,jxi) 1 < 67.7 < f}

1,7 1

Suppose i # i and j < f. We claim that v(a;’;x?) < v(a;jz;). If they were
equal then
v(a;) — v(z;) = v(a;;) —vla;5) € Ik,
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contradicting that v(z;) and v(z;) represent different cosets. Thus v(a;52;) <

v(a; jx;) for £,
Let b;; = Zl; 5. Then

i

f e
ey
0=33 b
j=11i=1 i
and b; ;7 € my, for i # 5 Thus
oo /
I D ML
j=1 %J j=1 275’{

Let ¢; ; =res(a; ;/a;3). Then ¢;= =1 and

!
> ciid; =0,
=1

contradicting that 7, ...,y are linearly independent over k. O

Exercise 3.19 Show that even if L/K is an infinite algebraic extension the
argument above shows that if (z; : ¢ € I) represent distinct cosets of I'p /T k
and (y; : j € J) are such that (y; : j € J) are linearly independent over
ki, then (z;y; : ¢ € I,j € J) are linearly independent and v(}_ a; jzy;) =
min v(a; ;T;y;)-

Definition 3.20 If K C L are fields and L/K is algebraic, we say that L/K is
normal if L is a splitting field for every irreducible f € K[X] with a zero in L.

A separable normal extension is a Galois extension. Thus in characteris-
tic 0 normal and Galois are the same. But in characteristic p we can build
nonseparable normal extensions by taking p*"-roots.

Our goal for the rest of this section is to show that if L/K is a normal
extension and O is a valuation ring of K, then the valuation rings of L extending
O are all conjugate under the action of the Galois group.

We need a form of the Chinese Remainder Theorem.

Lemma 3.21 Let A be a domain and let mq, ..., m, be distinct maximal ideals
of A. Then for any aq,...,a, we can find a € A such that a = a;(mod m;) for
all 1.

Proof

claim For each ¢ we can find b; such b; = 1(mod m;) but b, € m; for j # 1.

For notational simplicity assume ¢ = 1. If j # 1 then my + m; = A, as
otherwise m; + m; is an ideal, contradicting maximality. Thus there is ¢; € my
and d; € m; such that ¢; + d; = 1. Then

1= H(Cj —|—dJ) = de(mod ml).

i1 1
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Let b, = Hjsél d;. Then by = 1(mod my) but by € m; for i # ).
Let a =3 a;b;. Then a = a;(mod m;) for all 1. O

Lemma 3.22 Let A be a local domain integrally closed in its fraction field K
and let L/ K be normal. Let B be the integral closure of A in L. Then any two
mazimal ideals of B are conjugate under Gal(L/K).?

Proof Tt suffices to prove this when L/K is finite. Let mg and m; be maximal
ideal of B and suppose there is no ¢ € Gal(L/K) with o(m;) = my. Let
X; ={o(m;) : 0 € Gal(L/K)} then Xy N X; = (). By the Chinese Remainder
Theorem, we can find b € B such that b € m for m € Xy and b = 1(mod m) for
m € X;. Thus o(b) € mg \ my for all 0 € Gal(L/K).

For the remainder of the proof we will assume that our fields have character-
istic zero. One needs to be slightly more careful in characteristic p when we have
an inseparable extension. Suppose f(X) = X% + Zi;é a; X% ag,...,a4-1 € A
be the minimal polynomial of b over K.. Since L/K is normal, f(X) =
H?ZI(X — B;) where f31,...,04 € L are the distinct roots or f, i.e., the set
of conjugates of b under Gal(L/K). Without loss of generality, we assume
L=K(B1,..-,B4). Then

d
[T e®=]]8=acA

c€Gal(L/K) i=1

Each o(b) € mg. Thus ag € mpN A =myu C my. But no o(b) € my, thus, since
my is prime ag € my, a contradiction. O

Lemma 3.23 Let A be a valuation ring with fraction field K, let L O K be
an algebraic extension and let B be the integral closure of A in L. For every
valuation ring O C K with my C me there is n a mazimal ideal of B with
O = B,.

Moreover, for every mazimal ideal n C B, By is a valuation ring.

Proof Let O be a valuation ring of L with my C mp. Since O is integrally
closed in L, BC 0. Let n =mp N B.

If x € B\ n, then 1/z € O. Thus B, C O. Let x € O. Since L/K is
algebraic, there are ag, . ..,aq € A not all zero such that > a;2° = 0. Let m < d
be maximal such that v(a,,) = min(v(a;) : i = 0,...,d) and divide }_ a;2* by
amx™. Thus, letting b; = a;/a,, we have

d m—1
Z bﬂL‘Zim + 1 + Z bizlim = 0
1=m+1 =0

d

Note that bg,...,bpm—1 € Aand byyy1,...,0g Emy. Lety = Zi=m+1 bzt~ 41

and z = Z;’;Bl biz'~™*!. Then zy = —z and y is a unit in O.

3We use Gal(L/K) to denote the group of automorphism of L/K even when L/K is not
necessarily a Galois extension.
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We claim that y,z € B. Since B is the integral closure of A in L, by
Lemma 3.15, it suffices to show that =,y € V for any valuation ring V' C £ with
myNA=my. fex eV, thenyeVandz=—zyeV.Ilfx gV, thenl/z €V,
2= bt e Vand y = —z/z € V.

Since y is a unit in O, y € n. Thus x = —z/y € B,. Thus B, = O.

To prove the last claim of the lemma we need to show that if n is a maximal
ideal of B, then B, is a valuation ring extending A. Clearly nN A = m4. By
Chevalley’s Theorem, there is a valuation ring O such that B N'my = n. Then
by the first part of the lemma O = B,,. O

We summarize the last few lemmas.

Theorem 3.24 Let A be a valuation ring with fraction field K, let L O K be
an algebraic extension and let B be the integral closure of A in L. There is a
bijective correspondence m — By, between mazimal ideals of B and valuation
rings O C L with mp N A = my. Moreover, if L/K is normal, then any two
such valuation rings are conjugate under Gal(L/K).

Corollary 3.25 Let (K, Q) be a valued field and let L/ K be a purely inseparable
algebraic extension of K. Then there is a unique valuation ring O on L with
(K,0) C (L,0").

Proof L is obtained from K by adjoining p*P-roots where K has characteristic

p. Then L/K is normal but there are no nontrivial automorphisms of L fixing
K. O
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