
3 Extensions of Rings and Valuations

When studying the model theory of certain theories of valued fields our first step
will usually be to prove quantifier elimination in an appropriate language. Proofs
of quantifier elimination in algebraic theories usually require some algebraic
extension results. That is particular true in valued fields. In this section we
will prove some basic results and then will use them in §4 to begin the study
of the model theory of algebraically closed valued fields. In §5 we will focus on
extension results for henselian valued fields.

For more details on some of the background results from commutative al-
gebra see, for example [12] or [19]. All of the results we will be proving on
extensions of valuations can be found in [13]. To be careful we will tend to state
most results for domains even though many are true in more generality.

3.1 Integral extensions

We begin by reviewing some facts about the integral extensions.
Recall that a domain A is local if and only if A has a unique maximum ideal

m which is exactly the nonunits of A.

Definition 3.1 If A ⇢ B are domains, we say that b 2 B is integral over A, if
there are a0, . . . , an�1 2 A such that

bn + an�1b
n�1 + · · ·+ a1b+ a0 = 0

for some n. We say that B is integral over A if every element of B is integral
over A.

Lemma 3.2 Let A ⇢ B be domains and b 2 B. The following are equivalent.

i) b is integral over A.

ii) A[b] is a subring of B that is a finitely generated A-module.

iii) A[b] is contained in a finitely generated A-module.

Proof i) ) ii) If bm =
P

m�1
n=0 anbn where a0, . . . , am�1 2 A. Then A[b] is

generated over A by 1, b, . . . bm�1.

ii) ) iii) is clear.

iii) ) i) Let x1, . . . , xm generate a submodule containing A[b] over A. For
i = 1, . . .m we can find ai,1, . . . , ai,m 2 A such that

bxi =
mX

j=1

ai,jxj .

Let M be the matrix
0

BBB@

a1,1 � b a1,2 . . . a1,m
a2,1 a2,2 � b . . . a2,m
...

...
. . .

...
am,1 am,2 . . . am,m � b

1

CCCA
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i.e, the matrix with ai,i � b along the diagonal and ai,j everywhere else. Then
M(x1, . . . , xm)T = 0. Let Adj(M) be the adjoint of M . Then

Adj(M)M(x1, . . . , xm)T = (detMx1, . . . , detMxm)T = (0, . . . , 0)T .2

Thus we must have detM = 0. But detM is a monic polynomial in A[b]. ⇤

Corollary 3.3 If A ⇢ B ⇢ C are domains, B is an integral extension of A and

C is an integral extension of B, then C is an integral extension of C.

Proof Let c 2 C. There are b0, . . . , bn�1 2 B such that cn +
P

bici = 0. Then
A[b0, . . . , bn�1, c] is a finitely generated A-module and c is integral over A. ⇤

The next lemma is a simple but useful tool.

Lemma 3.4 If A is a local subring of a field K, x 2 K⇥
and 1 = a0+

a1
x
+. . . an

xn

where a0 2 m and a1, . . . , an 2 A, then x is integral over A.

Proof Then (1 � a0)xn
� a1xn�1

� · · · � an = 0. Since a0 2 m, 1 � a0 62 m.
Since A is local, 1� a0 is a unit and x is integral over A. ⇤

Lemma 3.5 If A ⇢ B are domains and B is integral over A, then A is a field

if and only if B is a field.

Proof (() Suppose B is a field and a 2 A is nonzero. Then there are
c0, . . . , cm�1 2 A such that

(a�1)m +
m�1X

n=0

cn(a
�1)n = 0.

Multiplying by am�1 we see that

a�1 = �

m�1X

n=0

cna
m�n�1

2 A.

Thus A is a field.

()) Suppose A is a field and b 2 B is nonzero. Then, by Lemma 3.2 A[b] is
a finitely generated vector space over A. The map z 7! bz is an injective linear
transformation of A[b] and, since A[b] is a finite dimensional vector space must
be surjective. Thus there is z 2 A[b] with zb = 1. ⇤
Definition 3.6 Let A ⇢ B be domains and let P ⇢ A, Q ⇢ B be prime ideals.
We say that Q lies over P if A \Q = P .

Corollary 3.7 Let A ⇢ B be domains with B integral over A and let P ⇢ A
and Q ⇢ B be prime ideals such that Q lies over P . Then P is maximal if and

only if Q is maximal.

2
Remember Cramer’s Rule!
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Proof Since P = A\Q we can view B/Q as an integral extension of A/P . By
the last lemma, A/P is a field if and only if B/Q is a field. ⇤

Lemma 3.8 Suppose A ⇢ B are domains, B is integral over A, Q is a prime

ideal in B and P = Q \A. Then then BAP is integral over AP .

Proof Consider b/t where b 2 B and t 2 A \ Q. There are a0, . . . , am�1 2 A
with bm +

P
aibi = 0. But then

(b/t)m +
X

(ai/t
m�i)(b/ti) = 0.

⇤

Lemma 3.9 Suppose A ⇢ B are domains, B is integral over A, P ⇢ A is a

prime ideal and Q1 ✓ Q2 are prime ideals in B lying over P . Then Q1 = Q2.

Proof Consider the localization AP and the integral extension BAP . Then
Q1AP and Q2AP are prime ideals of BAP lying over PAP . But PAP is max-
imal. Thus each QiAP is maximal and we must have Q1AP = Q2AP . But if
x 2 Q2 \ Q1, then x 62 Q1AP . If we did have x = q/t for some q 2 Q1 and
t 2 A \ P . Then xt 2 Q1 and since x 62 Q1 and Q1 is prime, we would have
t 2 Q1 \A = P , a contradiction. ⇤

Theorem 3.10 (Lying Over Theorem) Suppose A ⇢ B are domains, B is

integral over A and P is a prime ideal of A. There is a prime ideal Q of B such

that A \Q = P .

Proof First, suppose A was a local ring then P is the unique maximal of A.
If Q ⇢ B is any maximal idea extending P , then, by Corollary 3.7, Q \ A is
maximal. But then Q = P .

In general, we pass to the localization AP . As above, if Q0 is any maximal
ideal in BAP , then Q0 \ AP = PAP . So Q0 \ A = P . Let Q = Q0 \ B. Then
Q \A = P and, since Q0 is prime, Q is prime. ⇤

3.2 Extensions of Valuations

Theorem 3.11 (Chevalley’s Theorem) Suppose A is a subring of a field K
and P ⇢ A is a prime ideal. Then there is a valuation ring O of K with

A \MO = P

Proof Replacing A by AP we may assume that A is a local ring with maximal
ideal P . Let P be the set of all local subrings B of K with mB \ A = P .
Clearly P is partially ordered by ⇢ and if (Bi : i 2 I) increasing chain in P thenS

i2I
Bi is an upper bound. Thus by Zorn’s Lemma, P has maximal elements.

Let O 2 P be maximal. Let m be the maximal ideal of O. We will argue that
O is a valuation ring.
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Suppose x, 1/x 2 K \O. If x is integral over O, then we can find a maximal
ideal of O[x] lying over m contradicting the maximality of O 2 P. Thus x is
not integral over O.

By Lemma 3.4, 1 62 mO[1/x]. Thus there is a maximal ideal Q of O[1/x]
that lies over m, contradicting the maximality of O. Thus for all x 2 K at least
one of x and 1/x is in O. ⇤
Exercise 3.12 Show that if v : K⇥

! � is a valuation and L � K is an
extension field, there is �0

◆ � and w : L⇥ ! �0 extending v.

integral closures and valuations

Definition 3.13 We say that A is integrally closed in B if no element of B \A
is integral over A. We say that A is integrally closed if it is integrally closed in
its fraction field.

The integral closure of A is the smallest integrally closed ring containing A.

Lemma 3.14 If (K, v) is a valued field, then the valuation ring O is integrally

closed.

Proof Suppose b 2 K and bn+an�1bn�1+· · ·+a1b+a0 = 0 where a0, . . . , an�1 2

O. If b 62 O, then v(b) < 0 and

v(aib
i) = v(a) + iv(b) < nv(b)

since v(ai) � 0 for all i. Thus v(bn + an�1bn�1 + · · ·+ a1b+ a0) = nv(b) < 0, a
contradiction. ⇤

We can use valuation rings to find the integral closure of a local subring.

Lemma 3.15 Let A be a local subring of a field K with maximal ideal m. The

integral closure of A 2 K is the intersection of all valuation rings O ⇢ K with

mO lying over m.

Proof Suppose x 2 K be nonintegral over A. Then by Lemma 3.4, 1 62

mA[1/x] + 1
x
A[1/x]. Thus we can find a maximal ideal Q of A[1/x] lying over

m with 1/x 2 Q. Let O ◆ A[1/x] be a maximal local subring of K. Then, as in
the proof of Theorem 3.11, O is a valuation ring, mO lies over m and 1/x 2 mO.
Thus x 62 O. ⇤

Algebraic Extensions

Suppose K ⇢ L are fields and v is a valuation on K. Then v restricts to a
valuation onK. LetOL,�L,kL andOK ,�K ,kK denote the respective valuation
rings, value groups and residue fields.

Lemma 3.16 Then �L is contained in the divisible hull of �K and kL is an

algebraic extension of kK .
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Proof Let x 2 L \K. There are a0, . . . , an 2 K such that
P

aixi = 0. There

must be i 6= j such that v(aixi) = v(ajxj). But then v(x) = v(ai)�v(aj)
j�i

.

Suppose x 2 L and the residue x 2 kL \ kK . There is a polynomial f [X] 2
OK(X) such that f(x) = 0. Let f(X) =

P
aiXi. Suppose aj has minimal

value and let g(X) =
P

ai
aj
Xi. Then g(x) = 0 and g(X) is not identically zero

as some coe�cient is 1. Thus x is algebraic over K. ⇤

Corollary 3.17 i) If k is an algebraically closed field, � is a divisible ordered

abelian group and K = k(((�))), then K is algebraically closed.

ii) If k is a real closed, � is a divisible ordered abelian group and K = k(((�))),
then K is real closed.

Proof If K is not algebraically closed field let L/K be an algebraic extension,
then we can extend the valuation to L and since kL/k is algebraic and �(L) is
contained in the divisible hull of �(K) by Exercise 1.8 (see also Lemma 3.16).
But k is algebraically closed and � is divisible, thus L/K is immediate. But
we saw in Lemma 2.46 that Hahn fields have no proper immediate extensions.
Thus K is algebraically closed.

ii) If k is real closed, then kalg(((�))) is a degree 2 algebraic extension of
k(((�))). Thus by the work of Artin and Schreier (see for example [19] XI §2
Proposition 3), k(((�))) is real closed. ⇤

We will prove much more general of these results later.

If L/K is a finite algebraic extension and [L : K] = d, then the argument
above shows that [�L : �K ]  d and [kL : kK ]  d. We will prove a much
sharper bound. We let e = [�L : �K ] be the ramification index and f = [kL :
kK ] be the residue degree . Note that if e = f = 1, then L is an immediate
extension of K.

Theorem 3.18 (Fundamental Inequality) If L/K is a finite algebraic ex-

tension of degree d then ef  d.

Proof Choose x1, . . . , xe 2 L such that v(x1), . . . , v(xn) represent distinct
cosets of �L/�K . Choose y1, . . . , yf 2 L such that y1, . . . , yf is a basis for
kL/kK . It su�ces to show that (xiyj : i  e, j  f) are linearly independent
over K.

Suppose X

ie,jf

ai,jxiyj = 0

where not all ai,j = 0. Pick bi and bj such that

v(abi,bjxbi) = min{v(ai,jxi) : i  e, j  f}.

Suppose i 6= bi and j  f . We claim that v(abi,bjxbi) < v(ai,jxi). If they were
equal then

v(xbi)� v(xi) = v(ai,j)� v(abi,bj) 2 �K ,
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contradicting that v(xbi) and v(xi) represent di↵erent cosets. Thus v(abi,bjxbi) <

v(ai,jxi) for i 6= bi.
Let bi,j =

ai,j

abi,bj
xbi. Then

0 =
fX

j=1

eX

i=1

bi,j
xi

xbi
yj

and bi,j
xi
xbi

2 mL for i 6= bj. Thus

fX

j=1

abi,j
abi,bj

yj = �

fX

j=1

X

i 6=bi

bi,jxiyj 2 mL.

Let cbi,j = res(abi,j/abi,bj). Then cbi,bj = 1 and

fX

j=1

ci,jyj = 0,

contradicting that y1, . . . , yf are linearly independent over kK . ⇤
Exercise 3.19 Show that even if L/K is an infinite algebraic extension the
argument above shows that if (xi : i 2 I) represent distinct cosets of �L/�K

and (yj : j 2 J) are such that (yj : j 2 J) are linearly independent over
kK , then (xiyj : i 2 I, j 2 J) are linearly independent and v(

P
ai,jxiyj) =

min v(ai,jxiyj).

Definition 3.20 If K ⇢ L are fields and L/K is algebraic, we say that L/K is
normal if L is a splitting field for every irreducible f 2 K[X] with a zero in L.

A separable normal extension is a Galois extension. Thus in characteris-
tic 0 normal and Galois are the same. But in characteristic p we can build
nonseparable normal extensions by taking pth-roots.

Our goal for the rest of this section is to show that if L/K is a normal
extension and O is a valuation ring of K, then the valuation rings of L extending
O are all conjugate under the action of the Galois group.

We need a form of the Chinese Remainder Theorem.

Lemma 3.21 Let A be a domain and let m1, . . . ,mn be distinct maximal ideals

of A. Then for any a1, . . . , an we can find a 2 A such that a = ai(mod mi) for

all i.

Proof
claim For each i we can find bi such bi = 1(mod mi) but bi 2 mj for j 6= i.

For notational simplicity assume i = 1. If j 6= 1 then m1 + mj = A, as
otherwise m1 +mj is an ideal, contradicting maximality. Thus there is cj 2 m1

and dj 2 mj such that cj + dj = 1. Then

1 =
Y

j 6=1

(cj + dj) =
Y

j 6=1

dj(mod m1).
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Let b1 =
Q

j 6=1 dj . Then b1 = 1(mod m1) but b1 2 mi for i 6= ⌘.

Let a =
P

aibi. Then a = ai(mod mi) for all i. ⇤

Lemma 3.22 Let A be a local domain integrally closed in its fraction field K
and let L/K be normal. Let B be the integral closure of A in L. Then any two

maximal ideals of B are conjugate under Gal(L/K).3

Proof It su�ces to prove this when L/K is finite. Let m0 and m1 be maximal
ideal of B and suppose there is no � 2 Gal(L/K) with �(m1) = m2. Let
Xi = {�(mi) : � 2 Gal(L/K)} then X0 \X1 = ;. By the Chinese Remainder
Theorem, we can find b 2 B such that b 2 m for m 2 X0 and b = 1(mod m) for
m 2 X1. Thus �(b) 2 m0 \m1 for all � 2 Gal(L/K).

For the remainder of the proof we will assume that our fields have character-
istic zero. One needs to be slightly more careful in characteristic p when we have
an inseparable extension. Suppose f(X) = Xd +

P
d�1
n=0 aiX

i, a0, . . . , ad�1 2 A
be the minimal polynomial of b over K.. Since L/K is normal, f(X) =Q

d

i=1(X � �i) where �1, . . . ,�d 2 L are the distinct roots or f , i.e., the set
of conjugates of b under Gal(L/K). Without loss of generality, we assume
L = K(�1, . . . ,�d). Then

Y

�2Gal(L/K)

�(b) =
dY

i=1

�i = a0 2 A.

Each �(b) 2 m0. Thus a0 2 m0 \ A = mA ✓ m1. But no �(b) 2 m1, thus, since
m1 is prime a0 62 m1, a contradiction. ⇤

Lemma 3.23 Let A be a valuation ring with fraction field K, let L ◆ K be

an algebraic extension and let B be the integral closure of A in L. For every

valuation ring O ⇢ K with mA ✓ mO there is n a maximal ideal of B with

O = Bn.

Moreover, for every maximal ideal n ⇢ B, Bn is a valuation ring.

Proof Let O be a valuation ring of L with mA ✓ mO. Since O is integrally
closed in L, B ✓ O. Let n = mO \B.

If x 2 B \ n, then 1/x 2 O. Thus Bn ✓ O. Let x 2 O. Since L/K is
algebraic, there are a0, . . . , ad 2 A not all zero such that

P
aixi = 0. Let m  d

be maximal such that v(am) = min(v(ai) : i = 0, . . . , d) and divide
P

aixi by
amxm. Thus, letting bi = ai/am we have

dX

i=m+1

bix
i�m + 1 +

m�1X

i=0

bix
i�m = 0.

Note that b0, . . . , bm�1 2 A and bm+1, . . . , bd 2 mA. Let y =
P

d

i=m+1 bix
i�m+1

and z =
P

m�1
i=0 bixi�m+1. Then xy = �z and y is a unit in O.

3
We use Gal(L/K) to denote the group of automorphism of L/K even when L/K is not

necessarily a Galois extension.
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We claim that y, z 2 B. Since B is the integral closure of A in L, by
Lemma 3.15, it su�ces to show that x, y 2 V for any valuation ring V ⇢ L with
mV \A = mA. If x 2 V , then y 2 V and z = �xy 2 V . If x 62 V , then 1/x 2 V ,
z =

P
m�1
i=0 bixi�m+1

2 V and y = �z/x 2 V .
Since y is a unit in O, y 62 n. Thus x = �z/y 2 Bn. Thus Bn = O.

To prove the last claim of the lemma we need to show that if n is a maximal
ideal of B, then Bn is a valuation ring extending A. Clearly n \ A = mA. By
Chevalley’s Theorem, there is a valuation ring O such that B \mO = n. Then
by the first part of the lemma O = Bn. ⇤

We summarize the last few lemmas.

Theorem 3.24 Let A be a valuation ring with fraction field K, let L ◆ K be

an algebraic extension and let B be the integral closure of A in L. There is a

bijective correspondence m 7! Bm between maximal ideals of B and valuation

rings O ⇢ L with mO \ A = mA. Moreover, if L/K is normal, then any two

such valuation rings are conjugate under Gal(L/K).

Corollary 3.25 Let (K,O) be a valued field and let L/K be a purely inseparable

algebraic extension of K. Then there is a unique valuation ring O
⇤
on L with

(K,O) ✓ (L,O⇤).

Proof L is obtained from K by adjoining pth-roots where K has characteristic
p. Then L/K is normal but there are no nontrivial automorphisms of L fixing
K. ⇤
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