4 Algebraically Closed Valued Fields

4.1 Quantifier Elimination for ACVF

We now have developed enough machinery to begin the study of the model
theory of algebraically closed valued fields.

Valued fields as structures

The first issue is deciding what kind of structure we are looking at, i.e., what
language or signature do we use to study valued fields? There are several natural
candidates.

One-sorted structures

We can think of valued fields as pairs (K, Q) where K is the field and O
is the valuation ring. In this case the natural language would be the usual
language of rings {4, —,-,0,1} together with a unary predicate @ which picks
out the valuation.

Three-sorted structures

We can think of valued fields as three-sorted structures (K, T, k) where we
have separate sorts for the field (which we refer to as the home sort, the value
group and the residue field. On the home sort and on the residue field we will
have the +,—,-,0, and 1. On the group we will have +, —, <,0. We also have
the valuation map v and the residue map res. *

It would also be natural to think of valued fields as two sorted structure
(K,T) and later we will consider adding more imaginary sorts.
How does this effect definability? It’s easy to see that it doesn’t.

Lemma 4.1 In the one-sorted structure (K, Q) we can interpret the value group
I, the residue field k and the maps v : K* — T and res : O — k. Thus
any subset of K™ definable in the three-sorted structure is definable in the one-
sorted structure. Moreover if X C K' x T'™ x k" is definable in the three-sorted
structure, then there is A C K%+ definable in (K, Q) such that

X ={(a1,...,a1),v(ar41, -, 0(@+m), 1€8(A14m+1), - - - s 1€8(Qpmain) : (A1y .-, Qgmin) € A.

In the three-sorted structure (K,T',v) we can define the value ring O = {x €
K :v(z) > 0}. Thus any subset of K™ definable in the one-sorted structure is
definable in the three-sorted structure.

We will also look at further variants of these languages.

e When studying the p-adic field Q,, we have already shown in Exercise
2.11 that Z, is definable in the field language. Thus any subset of Qp
definable in (Qy, Z,) is already definable in Q,, in the field language. The
exercises below show that this is not always possible.

4Note we should think of they symbols on each sort as being distinct, so while we routinely
use + on K, k and I'; if we were more careful we would think of them as three distinct symbols.
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e To prove quantifier elimination for algebraically closed valued fields we
will work in the language of divisibility

»Cdiv = {+v BT 07 |7 0; 1}
where | is a binary function symbol which we interpret

(K,0) Ezlyif and only if 3z € O zz = y.

The relation z|y is definable in (K, Q) thus any subset of K™ definable in
the language Lgjy is already definable in (K, O).

Note that once we have added | to the language we could get rid of O
since z € O if and only if 1]x.

e To prove quantifier elimination for Q, we will work in the Macintyre Lan-
guage Lytae = {+,—,,0,0,1, P5, P35, Py, ...} where P, is a unary predi-
cate predicate which we interpret in (K, ©) as the n*" powers of K. Since
xz € P, if and only if K |= Jy y™ = x, any subset of K" definable in Lyja¢
is already definable using £. Indeed in @, we can define Z, in a quanti-
fier free way using P as in Exercise 2.11. Thus we don’t really need the
predicate for O.

e In the original work of Ax and Kochen it was useful to work in the three-
sorted language and add a symbol for 7 : I' — K a section of the valuation.
This is more problematic. We saw in Exercise 2.34 that not every valued
field has a section. Moreover we will show that the section map is not
definable in the three-sorted language. Thus, while adding the section can
be useful, we will end up with new definable sets.

e An angular component map is a multiplicative homomorphism ac : K* —
k> such that ac agrees with the residue map on the units. For example
on Q, if vy(z) = m then z = amp™ + ame1p™ ™ + ... and we can let
ac(x) = ap,. Similarly, there is an angular component map on K ((7')).

If we have a section 7 : I' = K, then we can define an angular component
map by ac(xz) = res(xz/m(x)). But, like sections, angular component maps
need not exist and, even when they do exist, may change definability.
Nevertheless, we will find it useful to work in the three-sorted language
Lpas where we add a symbol for an angular component map. This is called
the Pas language

Exercise 4.2 Let (K, Q) be a valued field where K is algebraically closed or
real closed. Show that O is not definable in K in the pure field language.

Exercise 4.3 Suppose m : I' = K is a section of the valuation. Show that
ac(z) = res(z/m(x)) is an angular component map.
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Quantifier Elimination

We will prove quantifier elimination for algebraically closed valued fields in the
language Lgiv. Let ACVF be the Laiy-theory such that (K, O,|) = ACVF if and
only if K is an algebraically closed field with valuation ring O and z|y if and
only if there is z € O such that zaz = y. We will also assume that the valuation
is nontrivial so there is x € K* \ O.

Theorem 4.4 (Robinson) The theory of algebraically closed fields with a non-
trivial valuation admits quantifier elimination in the language Laiv.”

Quantifier elimination will follow from the following proposition.

Proposition 4.5 Suppose (K,v) and (L,w) are algebraically closed fields with
non-trivial valuation and L is |K|*-saturated. Suppose R C K is a subring, and
f: R — L is an Lgyv-embedding. Then f extends to a valued field embedding
g: K — L.

Exercise 4.6 Show that the proposition implies quantifier elimination. [Hint:
See [22] 4.3.28.]

We will prove the Proposition via a series of lemmas.

Definition 4.7 Suppose R is a subring of K. We say that a ring embedding
f:R— L is an Lyj,-embedding if for a,b € R,

RI=alb < w(f(a)) < w(f(b)).

First, we show that without loss of generality we can assume R is a field.

Lemma 4.8 Suppose (K,v) and (L,w) are valued fields, R C K is a subring
and f : R — L is and Lajv-embedding. Then f extends to a valuation preserving
embedding of Ky, the fraction field of R into L.

Proof Extend f to Ko, by f(a/b) = f(a)/f(b). If x € Ky, then z is a unit
in (K,v) if and only if |1 and 1|z if and only in f(x) is a unit in (L, w). Since
the value group is given by K* /U, addition in the value group is preserved. So
we need only show that the order is preserved.

Suppose z,y € Ko. There are a,b,c € R such that x = ¢ and y = %. Then

v(z) <o(y) & v(a) <vb) <REab < L fa)|f() & o(f(z) < o(f(y)-
O

We next show that we can extend embedding from fields to their algebraic
closures.

5 Actually, Robinson only proved model completeness, but his methods extend to prove
quantifier elimination.
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Lemma 4.9 Suppose (K,v) and (L,w) are algebraically closed valued fields,
Ky C K is a field and f : Koy — L is a valuation preserving embedding. Then
f extends to a valuation preserving embedding of Kglg, the algebraic closure of
Koy into L.

Proof Tt suffices to show that if x € K \ K is algebraic over K, then we can
extend f to K(z). Let Ko(z) € F C K with F/Ky normal. There is a field
embedding ¢g : F' — L with ¢ D f and g(v) gives rise to a valuation on g(F)
extending f(v|Kp). Then g(v|F) and w|g(F) are valuations on g(F') extending
f(v|Kp) on f(Kp). By Theorem 3.24, there is o € Gal(g(F)/f(Ko)) mapping
g(v|F) to w|g(F). Thus o o g is the desired valued field embedding of F into L
extending f. O

Thus in proving Proposition 4.5 it suffices to show that if we have (K,v)
and (L, w) non-trivially valued algebraically closed fields, L is |K|T-saturated,
Ky C K algebraically closed and f : Ky — L a valuation preserving embedding,
then we can extend f to K. There are three cases to consider.

case 1 Suppose = € K, v(z) = 0 and 7 is transcendental over kg, .

We will show that we can extend f to Kp[x], then use Lemmas 4.8 and 4.9
to extend to Ko(x)!. Since L is |K|"-saturated, there is y € L such that ¥ is
transcendental over kf(x,). We will send = to y.

Suppose a = mg + a1x + - -+ + m,z"™, where m; € Ky. Suppose m; has
minimal valuation. Then a = m;(} b;z") where v(b;) > 0 and b, = 1. Then
(Y biat) > 0. If (> bix?) > 0, then taking residues we see that

Z szz =0,

but b, = 1, so this is a nontrivial polynomial and Z is algebraic over kg,. Thus
v(Y] b)) = 0 and v(a) = my.

Thus v(a) = min{v(m;) : i = 0,...,n}. Similarly, in L, w(} f(m;)y’) =
min{w(f(m;)) : i = 0,...,n}. Thus the extension of f to Ky[z] is and L4-
embedding.

case 2 Suppose x € K and v(x) € v(Kp).

Let v = v(x). Suppose a,b € Ky, i < j are in N, and v(a) + iy = v(b) + jv.
Since K is algebraically closed there is ¢ € Kj such that ¢/ =% = %, but then
v =wv(c) € v(Kp).

Suppose a € Ky[z] and a = mg + myz + ... mpx™. Since the v(m;) + iy are
distinct, v(a) = minv(m;) + .

Since L is |K|*-saturated, there is y € L realizing the type

{w(f(a)) <w(y) :a € Ko,v(a) < (@)} U{wly) <w(fO):v(z) <vla)}
Then v(a)+iv(z) < v(b)+jv(z) if and only if w(f(a))+iw(y) < w(f(b))+jw(y)

for all a,b € Ky and the extension of f to Kylx] sending x to y is and Lg4-
embedding.
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case 3 Suppose x € K \ Koy, v(Ko(x)) = v(Ko) and kg, (z) = kK, i.e., Ko(x)
is an immediate extension of K.

Let C = {v(x —a) : a € Ky}. Since v(Ky(z)) = v(Ko), C C v(Kp). We
claim that C' has no maximal element. Suppose v(b) € C is maximal. Then
v(*5%) = 0 and, since kg, = Kk, (s), there is ¢ € Ky such that =5% —c = €
where v(e) > 0. But then,

v(z —a —be) = v(be) > v(b),

a contradiction.
Consider the type

%(y) = {wly = f(a)) = w(b) - a,b € Ko,v(x —a) = v(b).}

We claim that ¥ is finitely satisfiable. Suppose a1,...,a,,b1,...,b, € Ky and
v(x — a;) = v(b;). Because f is valuation preserving it suffices to find ¢ € K

with v(c—a;) = v(b;) for i = 1,...,n. Since C' has no maximal element, there is
¢ € Ky such that v(z —c¢) > v(b;) for i =1,...,n. Then v(c—a;) =v(x —a;) =

By sending = to y we can extend f to a ring isomorphism between Ko[z] and
f(Ko)[y]. For a € Ky, there is p(X) € Ko[X] such that d = p(z). Factoring p
into linear factors over the algebraically closed field K, there is ay, - .., a, such
that

n

d=p(z) = ag H(x — a;).

i=1
For each ¢ we can find b; € Ky such that v(z — a;) = v(b;). Thus

n

o(d) = vla0) + (b

By choice of y, we also have

thus f preserves the valuation.

This concludes the proof of Proposition 4.5 and hence the proof that ACVF
has quantifier elimination in the language Ly .

The proofs we have given can readily be adapted to prove quantifier elimi-
nation in the three-sorted language.

Exercise 4.10 Modify the proofs above to verify that algebraically closed fields
have quantifier elimination when viewed as three-sorted structures in the usual
language.
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4.2 Consequences of Quantifier Elimination
Completions of ACVF

ACVF is not a complete theory. We need to specify the characteristic of the field
K and the residue field k. If K has characteristic p, then k has characteristic
p. If K has characteristic 0, the k may have any characteristic. Let a be either
0 or a prime. If a = p a prime, then b = p. If a is zero, then b is either zero or
a prime. Let ACVF,; be ACVF with additional axioms asserting the field has
characteristic a and the residue field has characteristic b.

Corollary 4.11 Fach theory ACVF,; is complete and these are exactly the
completions of ACVF.

Proof If (a,b) = (0,0) let R = (Q,Q,]). If (a,b) = (0,p) let R = (Q, Z(p),|)
and if (a,b) = (p,p), let R = (F,,F,,|). Suppose (K,Ok,|) and (L,Oy,|) are
models of ACVF, ;. Then R is a common substructure of both fields. Let ¢ be
an Lgjv-sentence. Then there is a quantifier free Lq;,-sentence such that

ACVF |= ¢ < 1.
But then, since v is quantifier free,

KE¢sKEbeREy s LEY & KE§.

Thus ACVF,;, is complete.
We have listed the only possibilities for the characteristics of the field and
residue field. Thus these are the only possible completions of ACVF.5 (]

Definable subsets of K

In any valued field we can always define open and closed balls and any finite
boolean combination of balls.” We will show that in an algebraically closed
valued field these are the only definable subsets of K.

Lemma 4.12 Let (K,v) be an algebraically closed valued field. Suppose f €
K[X]. Then we can partition K into finitely many sets each of which is a finite
boolean combination of balls such that that for each Y in the partition there are
n>1,a€ K andy €T in the value group such that v(f(z)) = nv(x —a) +
forallz €Y.

Proof Let f(X) = c¢(X —a1)--- (X —ay) for c € K* and aq,...,a, € K.
Then v(f(z)) =v(c)+---+v(x —a1) + -+ v(x — a,). We will show that we
can partition K such that on each set in the partition there is 7 such that either

SHere we are using the assumption that our fields have nontrivial valuations. If we were
to also consider the trivial valuation we would have completions saying that I have a trivial
valued field of characteristic 0 or p. But these are just the completions of ACF.

"Here we allow trivial balls K = {z : v(z) < oo} and {a} = {z : v(z) = co}. If we don’t
want to do this, we should look at boolean combinations of points and balls instead.
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v(z — a;j) = v(xz — a;) for each set in the partition or v(z — a;) is constant on
the partition. R

For each partition I, J of {1,...,n} where I is nonempty, let 7 be the least
element of I and let v; = v(a; — az) for j € J. Let

Yig={rc K:v(x—a;)=v(r—a;) >v(x—a;)foricl,jecJ}

Then the sets Y7 s are boolean combinations of balls and they partition K (of
course some Y7 ; might be empty.

For j # i let 7v; = v(a; — a;). Then

o if v(z — az) < 5, then v(z — a;) = v(z — a3)

o If v(z — a;) > v, then v(z — a;) = v;

e We can not have v(z — az) = 5, as then v(z — a;) > ~;, contradicting
S Y[’J.

This allows to partition Y7 ; into finitely many pieces each of which is a
boolean combination of balls, such v(z — a;) is either v(z — a;) or constant on
each set in the partition. O

Exercise 4.13 Show that if (K, v) is algebraically closed and f, g € K[X], then
{z € K:v(f(z) <wv(g(x))} is a finite Boolean combination of balls.

Corollary 4.14 If (K,O) = ACVF and X C K is definable, then X is a finite
boolean combination of balls.

Proof By quantifier elimination any definable subset of X is a finite boolean
combination of sets of the form {z : f(z) = g(x)} and {z : f(x)|g(x)} = {z :
f(z) < g(x)} for f,g € K[X]. O

Definition 4.15 A swiss cheese is a definable set of the form B\ (C1U---UC},)
where B, C1,...,C, are balls and C; C B (and we allow the possibilities where
B =K or ), n =0 and some B or C; is a point.)

Exercise 4.16 a) Show the intersection of two swiss cheese is a swiss cheese.
b) Show that the complement of a swiss cheese is a swiss cheese.
¢) Prove that every definable subset of K can be written in a unique way as
a finite union of disjoint swiss cheese.

Corollary 4.17 i) Any infinite definable subset of K has interior.
it) There is no definable section of the value group.

Proof i) Any definable set will contain a swiss cheese S = B\ (C1 U---UCy,),
where S # (). If a € S, then S contains a ball U with a € U.

ii) The image of the section would be infinite with no interior. O
Exercise 4.18 Suppose K is an algebraically closed valued field and A C K™+"
is definable. For x € K™ let A, = {y € K" : (z,y) € A}. Show that {z : A4,

is finite} is definable and that there is an N such that if A, is finite, then
A, < N.
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Exercise 4.19 Let A C K. Show that the model theoretic algebraic closure of
A is the field theoretic algebraic closure of A.

In Exercise 5.21 we will characterize definable closure in ACVF.

Exercise 4.20 Let (K,v) be an algebraically closed valued field. Prove that
there is no definable angular component map.

NIP

Let M be a structure. Recall that ¢(x1, ..., Zm,y1,- - -, yn) has the independence
property if for all k there are by,...,by € M™ and (¢;: J C {1,...,k}) in M"
such that

M ): ¢(Ei7EJ) EXAS J)

In which case we say that ¢ shatters by ..., b,. Otherwise we say ¢ has NIP.
We say that a theory has NIP if no formula has the independence property.
We need two basic facts about NIP. See [28] 2.9 and 2.11.

Lemma 4.21 i) T has NIP if and only if every formula ¢(x1,y1,.-.,yn) has
NIP.
i1) A boolean combination of NIP formulas has NIP.

Corollary 4.22 ACVF has NIP.

Proof By the lemma above and Corollary 4.14, it suffices to show that no
definable family of balls has the independence property. We claim that the
family of all balls can not shatter a set of size 3. Suppose a,b and ¢ € K are
distinct and, without loss of generality, v(a — b) < v(a — ¢),v(b — ¢). Then any
ball that contains ¢ and b contains ¢. Thus the family of all balls does not
shatter any three element set. O

Definable subsets of the value group and residue field

To study definable subsets of k™, I'™ and, more generally k™ x I'"* we need to
apply quantifier elimination in the three-sorted language. We will let variables

Zg, X1, ... range over the home sort, while yg, 91, ... ranges over the residue field
and zg, z1, ... range over the value group. Any atomic formula is equivalent to
one in one of the following forms

o t(xg,...,xm) =0, where ¢ is a polynomial over Z;

o t(yo, .- Yn,res(zg),...,res(x,,)) , where t is a polynomial over Z;

® 5(z0,...,21,0(T0), ..., 0(Tm)) =0, where s(ug, ..., Utmt1) = >, Tili, 15 €
Z;

® 5(z0,...,21,0(0)y .-, 0(Tm)) > 0, where s(ug, ..., Uipmi1) = D Tilli, 75 €
Z.

)

We say that A C k™ x I'"™ is a rectangle if there is B C k™ definable in the
field structure on k and C C I'™ definable in the ordered abelian group I' such
that A= B x C.
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Corollary 4.23 (Orthogonality) Fuvery definable subset of k" xT'™ is a finite
union of rectangles.

Proof By quantifier elimination, every definable set is a finite union of sets
defined by conjunctions of atomic and negated atomic formulas. But atomic
formulas defining subsets of k™ x I'™ only have variables over just the residue
field sort or just the value group sort and the definable set is either of the
form k™ x A or B x I' where A C k" is already definable in k or B C I'™ is
already definable in I". Thus any set defined by a conjunction of atomic and
negated atomic formulas is a rectangle and every definable set is a finite union
of rectangles. O

Corollary 4.24 i) Any definable function f : k — T has finite image.
ii) Any definable function g : T — k has finite image.

This shows that the residue field and value group are as unrelated as possible.
It also shows that the valuation structure induces no additional definability on
the residue field and value group.

Corollary 4.25 i) Any subset of k" definable in (K,T, k) is definable in the
field k.

it) Any subset of T'™ definable in (K,T', k) is definable in the ordered abelian
group T'.

In this case k with all induced structure, is just a pure algebraically closed
field and hence w-stable, while I with all induced structure, is a divisible ordered
abelian group and hence o-minimal.

Definition 4.26 We say that a sort S is stably embedded if any subset of S™
that is definable in the full structure is definable using parameters from S.

Corollary 4.27 The residue field and value group of an algebraically closed
field are stably embedded.

In the next section we give an example of an imaginary sort that is not stably
embedded.

Exercise 4.28 Let A C k. Prove that if b € k is algebraic over A in the
three-sorted valued field structure, then b is algebraic over A in the field k.

4.3 Balls

For this section we start by thinking of valued fields as three-sorted structures
(K, T, k), but this also makes sense if we think of them as one-sorted structures
(K,0).

For any valued field we can introduce two new sorts B, and B, for open
and closed balls. For B, define an equivalence relation ~ on K x I' such that
(a,v) ~ (b,9) if and only if y =6 and v = § and v(a — b) > . Then

(a,y) ~ (b,y) © b€ By(a) < a € By(b).
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Thus we can identify (a,v)/ ~ with B,(a). Let B, = K xI'/ ~. We can
indentify B, with the open balls of K. There is a definable map r : B, — I
given by r((a,7y)/ ~) = 7, i.e., r assigns each ball it’s radius. There is a definable
relation R, on K x B, such that aR,b if and only if a € b and there is a definable
function f, : K x K — By with f,(a,b) = B,u)(a).

Replacing ~ by (a,y) ~* (b,6) on K x I'U{oo} if and only if v = § and
v(a —b) > 7, we can similarly define the sort of closed balls B..

Exercise 4.29 Let a € K and let X C S be the set of all open balls containing
a. Prove that X is not definable with parameters from B,. [Hint: Show that for
any finite subset A of B, there is an automorphism (possibly of a larger field)
fixing A pointwise but moving X

While up to this point the construction makes sense in any valued field,
henceforth we will assume K is algebraically closed.

Lemma 4.30 If X C B. is an infinite definable set then either r|X is finite-to-
one, or there is an infinite definable Z C X and a definable surjection f : Z — k.

Proof If r|X is not finite-to-one, there is v € I' such that ¥ = {B € X :
r(B) = v} is infinite. Let A = Jzcy B. Then A is an infinite definable subset

of K and if a € A, then B,(a) €Y.

claim There is a closed ball B.(a) with ¢ < ~ such that every closed ball of
radius v in B.(a) is in Y.

By quantifier elimination A is a finite disjoint union of sets of W = B\
(C1U...Cn), where B,CY,...,C,, are balls. Since Y is infinite, some B must
have radius 6 <. If a € W, then B, (a) C W. Let a; be the center of C;, then
0 <w(a—a;) <~ for all i. Choose € such that § < v(a —a;) < € < 7. Then
B.(a) C W C A. Thus if b € B(a), then B, (b) € Y.

Let Z be the set of closed balls of radius « contained in B.(a). Then Z is
an infinite set of closed balls and Z C Y.

If we choose ¢ € K with v(c) = —¢, then g(x) = ¢(xr—a) is a bijection between
Bc(a) and O. If by, by € B.(a) such that v(b; —by) > 7, then v(g(b1) — g(b2)) =
v(by — b2) — e > 0. Thus res(g(by)) = res(g(b2)). Thus the map B, (b) — res(b)
is a well defined map from Z onto k. O

Corollary 4.31 Suppose f :T' — B.. Let X be the image of f. Then r|X is
finite-to-one.

Proof If not there is an infinite Z C X and a definable surjection g : Z — k.
Let A = f~1(Z). Then go f|A is a definable map from an infinite definable
subset of I" onto k, a contradiction. O

Lemma 4.32 If X C B, is infinite, there is a definable f : X — T" with infinite
image. In particular, the image of f contains a non-trivial interval.
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Proof First consider the image of X under the radius map. If this is infinite,
then we are done. If not, then, without loss of generality we may assume that
all balls in X have radius 7. Let A = (Jgcy B. As the proof of Lemma 4.30,
there is a closed ball B.(a) C A with € < v. If z,y € Bc(a) \ B,(a) such that
v(x —a) > 7, then v(z — a) = v(y — a). Thus we have a well defined function
f Y — T such that

v(z —a) if BC B(a)\ Bs(a) and a € B
f(B) = . :
0 otherwise
Then the image of f is an infinite subset of I'. O

We can extend this result to balls in n-spaces. Let v € I' and let a =
(a1,...,an) € I Then

By(a)={be K": \v(a; —b;) >~}

is the closed ball around a of radius . Let B be the collection of all closed balls
in K. Let 7 : K™ — K" ! be the projection onto the first n — 1 coordinates. If
B € B is a closed ball of radius §, then 7(B) € B?~! and if Bs((ay,...,an,_1) €
Br~! then B is in the fiber 771(By) if and only if

B = Bs(a1,...,a,) = Bs(a,...,a,_1) x Bs(an)

for some a,, € K. Thus the fiber is in definable bijection with an infinite subset
of B..

Corollary 4.33 If X C B is infinite and definable, there is a definable func-
tion f: X — T' with infinite image.

Proof We proceed by induction on n, knowing the result is true for n = 1. Let
X C B?~!. Consider the projection of X to B7. If this is infinite we are done.
If not, some fiber is infinite. But this gives rise to an infinite subset of B, and
we are done. O

Corollary 4.34 If X C K™ is infinite, then there is a definable f : X — T
with infinite image.

Proof We have a definable injection a — {a} = B, (a) of K™ into B?. Thus
this follows from the previous corollary. O

4.4 Real Closed Valued Fields

We next consider valued fields (K, Q) where K is a real closed field and O is
a proper convex subring. We call O a real closed ring and we refer to (K, O)
as a real closed valued field. In a series of exercises we will prove the following
theorem of Cherlin and Dickmann.
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Theorem 4.35 The theory of theory of real closed valued fields admits quanti-
fier elimination in the language Laiv, < = {+,—,-, <,],0,1}.

As usual, the theorem will follow from an embedding lemma.

Lemma 4.36 Let (K,0) and (L,0Op) be real closed valued fields such that L
is |K|"-saturated. Let R be a subring of K and f : R — L is an embedding
that preserves both the order and the divisibility relation. Then f extends to an
order and valuation preserving embedding of K into L.

Let K, L, R and f : R — K be as in the lemma. We let v denote the
valuation on K and vy, denote the valuation on L.

Exercise 4.37 Let K be the fraction field of R. Show that f extends to an
order and and valuation preserving embedding of Ky into L.

Exercise 4.38 Let K be as above and let K{)Cl be the real closure of K| inside
K. Show that we can extend f to an order and valuation preserving of K;°!
into K.

Henceforth, we assume that we have K a real closed subfield of K and
f: Ky — L an order and valuation preserving embedding.

Exercise 4.39 Suppose z € K\ Ko, v(z) = 0 and 7 is transcendental over kg, .
Show that we can extend f to Ky(z) preserving the ordering and the valuation.

Exercise 4.40 Suppose x € K \ Ko, v(z) & v(Kp). Show that we can extend
f to Ko(z) preserving the ordering and the valuation.

Exercise 4.41 Suppose z € K \ Ky and K/Kj is immediate. Show that we
can extend f to Ky[z] preserving the ordering and the valuation.

Exercise 4.42 Conclude that the theory of real closed rings has quantifier
elimination. Show that the theory of real closed valued fields is complete.

Recall that an ordered structure (M, <,...) is weakly o-minimal if every
definable X C M is a finite union of points and convex sets.

Exercise 4.43 Show that a real closed ring is weakly o-minimal and NIP.

A partial converse holds ([21]). It T is a theory all of whose models are
weakly o-minimal rings, then they are real closed rings or real closed fields.
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