
6 The Ax–Kochen Eršov Theorem

6.1 Quantifier Elimination in the Pas Language

We will be considering valued fields as three-sorted objects (K,�,k) in the
Pas language where we have the language of rings {+,�, ·, 0, 1} on both the
home sort, i.e. the field K, and the residue field sort, the language of ordered
groups {+,�, <, 0} on the value group sort, the valuation map v : K⇥

! �
and an angular component map ac : K⇥

! k⇥. Not all valued fields have
angular component maps, but for any valued field we can pass to an elementary
extension where there is an angular component map.

Let �0 be the collection of all formulas of the form

• �(u), where � is a quantifier free formula in the language of rings and u
are variables in the field sort;

•  (v(f1(u)), . . . , v(fk)(u)),v)) where  is a formula in the language of
ordered groups, u are variables in the field sort, fi is a term in the ring
language and v are variables in the value groups sort;

• ✓(ac(g1(u)), . . . , ac(gk)(u)),w)) where  is a formula in the language of
ordered groups, u are variables in the field sort, gi is a term in the ring
language, and w are variables in the residue sort;

Note that we are allowing quantifiers over the value group and the residue
field but not over the home sort. Let � be the collection of finite boolean
combinations of�-formulas. Note that each� formula is equivalent to a formula
of the form

�(u) ^  (v(f1(u)), . . . , v(fk)(u)),v)) ^ ✓(res(g1(u)), . . . , res(gl)(u)),w)),

where �,  and ✓ are as above.

Theorem 6.1 (Pas) Let T be the theory of henselian valued fields with angular

components where the residue field has characteristic zero. Then every formula

is equivalent to a �-formula.

We will use the following relative quantifier elimination test.

Exercise 6.2 Suppose L is countable. Let � be a collection of formulas closed
under finite boolean combinations and let T be an L-theory with the following
property.

Whenever M and N are models of T , |M| = @0 N is @1-saturated, A ⇢ M

and f : A ! N is a �-embedding (i.e, M |= ✓(a) , N |= ✓(f(a) for a 2 A and

✓ 2 �), then there is bf : M ! N that is � preserving.
Show that every L-formula is equivalent to a �-formula. [Hint: add predi-

cates for all formulas in �.]

Our main step will be proving an embedding result. We look at embeddings
that preserved �-formulas. A map f : (A,�A,kA) ! L is an �-embedding if:

60



i) f |A is a ring embedding;
ii) f |�A is a partial elementary embedding in the language of groups;
iii) f |kA is a partial elementary embedding in the language of rings;
iii) f preserves v and ac.

Theorem 6.3 Let (K,�,k) and (L,�L, kL) be henselian valued fields with an-

gular component with characteristic zero residue field. Suppose K is count-

able, L is @1-saturated, (A,�A,kA) is a countable substructure of K, and f :
(A,�A,kA) ! (L,�L,kL) is a �-embedding. Then there is an extension of f

to a �-embedding bf : (K,�K ,kK) ! (L,�L,kL).

Henceforth, we assume K is countable and L is @1-saturated. We extend
our map by iterating the following lemmas.

Note that in a substructure (A,�A,kA), A and kA are domains, while �A is
a subgroup.

Lemma 6.4 Suppose (A,�A,kA) be a subring of K and f : (A,�A,kA) !

(L,�,kL) is a �-embeddings. Let F be the fraction field of A and let l be the

fraction field of kA. We can extend f to a �-embedding of (F,�, l) into L.

Proof There is a unique extension of f to (F,G, l). Since v(a/b) = v(a) �
v(b) and ac(x/y) = ac(x)/ac(y), vL(f(a/b)) = f(v(a/b)) and acL(f(x/y)) =
f(ac(x/y)), f is a �-embedding. ⇤

Henceforth, we will work only with substructures (F,�F ,kF ) where F and
kF are fields and �F is a group, v(F ) ✓ �F and ac(F ) ✓ kF .

We next show how to extend the value group.

Lemma 6.5 Suppose f : (F,�F ,kF ) ! (L,�L,kL) is a �-embedding. We can

extend f to a �-embedding of (F,�,kF ).

Proof We will prove this by iterating the following claim.

claim Let � 2 � \ �F and let G be the group generated by �F and �, then we
can extend f to (F,G,kF ).

Let p(v) be the type { (v, f(g1), . . . , f(gm)) : g1, . . . , gm 2 �F ,  a formula
in the language of ordered groups where � |=  (�, g1, . . . , gm). If  1, . . . , n 2

p(v) with parameters f(g1), . . . , f(gm), then, since f is a �-embedding

�L |= 9v
n^

i=1

 i(v, f(g1), . . . , f(gm)).

Thus p(v) is consistent and, by @1-saturation, realized in �L. Let �0 be a
realization and extend f by � 7! �0. ⇤

Lemma 6.6 If we have a �-embedding f defined on (F,�,kF ) we can extend

it to (F,�,k).
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Exercise 6.7 Prove Lemma 6.6.

We next make the residue map surjective.

Lemma 6.8 Suppose f is a �-embedding of (F,�,k). Then we can find F ✓

E ✓ K such that res : E ! k is surjective and we can extend f to a �-embedding

of (E,�,k).

Proof We iterate the following two claims and Lemma 6.4.

claim 1 Suppose we have a �-embedding f : (F,�,k) ! (L,�L,kL) and b 2 K
with residue b algebraic over res(F ) but not in res(F ). Then we can extend f
to F (b).

There is p(X) 2 OF [X] irreducible with p(X) the minimal polynomial of b
over res(F ). Let q(X) 2 Of(F )[X]be the image of p. Since the embedding of

residue fields is elementary, q(X) is irreducible in f(res(F )) and q(f(b)) = 0.
Moreover, since kL has characteristic zero and q is irreducible, q0(f(b)) 6= 0.
Since L is henselian, there is unique c 2 L such that q(c) = 0 and c = f(b). We
extend f to F (b) by b 7! c.

We need to show that the valuation and angular component are preserved.
Let d be the degree of p. Let x 2 F (b) = ↵(

P
d�1
i=0 aibi) where ↵ 2 F, ai 2 OF

and some v(ai) = 0 for some i. As p is the minimal polynomial of b,
P

aib
i

6= 0.

Thus v(x) = v(↵) and v(f(x)) = v(f(↵)) and ac(x) = ac(↵)(
P

aib
i

). A similar
analysis shows acL(f(x)) = acL(f(↵))(

P
f(ai)c

i).

claim 2 Suppose we have a �-embedding f : (F,�,k) ! (L,�L,kL) and b 2 B
with residue b transcendental over res(F ). Then we can extend f to F (b).

Let c 2 L with c = f(b). Then c is transcendental over F and we can extend
f by b 7! c. We need to show that the valuation and angular component are
preserved. If x 2 F [b] we can write x = ↵(

P
aibi) where ↵ 2 F , ai 2 OF and

v(ai) = 0 for some i. Then as in claim 2, v(x) = v(↵) and v(f(x)) = v(f(↵)),

ac(x) = ac(↵)(
P

aib
i

) and v and ac are preserved. As in Lemma 6.4, we can
extend to f from F [b] to F (b). ⇤

Next we make the valuation surjective.

Lemma 6.9 Suppose f is a �-embedding of (F,�,k). There is F ✓ E ✓ K
such that v : E ! � is surjective and we can extend f to (E,�,k).

Proof The lemma is proved by iterating the following two claims.

claim 1 Suppose we have a �-embedding f of (F,�,k) where the residue map
from F to k is surjective and g 2 � such ng 62 v(F ) for any n > 0. Let b 2 K
with v(b) = g. We will extend f to F (b).

Since g is not in the divisible hull of v(F ), b is transcendental over F . Let
c 2 L with v(c) = f(g) and acL(c) = f(ac(b)). We can extent f to F (b) with
b 7! c. Let x =

P
aibi recall that v(x) = min(v(ai) + iv(b)) and vL(f(x)) =

min vL(f(ai) + if(g)). Choose i such that v(ai) + iv(b) is minimal, then x =
aibi(1 + ✏) where v(✏) > 0 and ac(x) = ac(ai)ac(b)i. Similarly, acL(f(x)) =
acL(f(ai)ac(c)i, as desired.
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claim 2 Suppose we have a �-embedding f of (F,�,k) where the residue map
from F to k is surjective and let n > 0 be minimal such that there is g 2 �\v(F )
such that g > 0 and ng 2 v(F ). Then we can extend F to E with F ⇢ E ✓ K
and extend f to a �-embedding of (F,�,k) such that g 2 v(E).

Let a 2 F and b0 2 K be such that v(b0) = g and v(a) = ng. Since the
residue field does not extend we can choose a such that ac(bn0 ) = a, in which
case bn0 = a(1 + ✏) where ✏ 2 K and v(✏) > 0. Since K is henselian, there is
d 2 K with v(d) = 0 such that dn = 1 + ✏. Let b = b0/d. Then bn = a. By the
minimality of n, Xn

� a is the minimal polynomial of b over F .
Similarly, we can find c 2 L such that cn 2 f(F ) and vL(cn) = v(f(a)). Then

ac(c) is algebraic over kf(F ). But kf(F ) � kL, thus, ac(c0) 2 kf(F ). Thus there

is d 2 Of(F ) with d = f(ac(b))ac(c�1
0 ). Let c1 = dc0. Then ac(c1) = f(ac(b))

and f(a) = f(bn) = cn1 (1 + ✏) where v(✏) > 0. By henselianity, there is e 2 L
such that en = (1 + ✏). Let c = c1e, then cn = f(a), v(c) = f(v(b)) and
ac(c) = f(ac(b)). We extend f to F (b) by b 7! c. As in Lemma 6.5, we show
that f preserves the valuation and the the angular component map. ⇤

Lemma 6.10 Suppose the residue and valuation maps of (F,�,k) are surjective
and f is a �-embedding. Then we can extend F to (Fh,�,k)

Proof There is a unique valuation preserving extension of f from F to g : Fh
!

L. We know that Fh is an immediate extension of f . If a 2 Fh
\F , there is b 2 F ,

with v(a) = v(b), but then v(g(a)) = v(g(b)). There is c a unit in OF such that
res(c) = res(a/b). Thus ac(a) = ac(b)ac(c) and acL(g(a)) = acL(g(b))acL(g(c)).
⇤

We can now finish the proof of Theorem 6.3
Thus we may assume that we have a (F,�,k) such that F is henselian,

v : F ! � and res : F ! k are surjective and f is a �-embedding. Then
K is an immediate extension of F . By Zorn’s Lemma, we may assume that
F ✓ K is maximal henselian such that there is a �-embedding of (F,�,k) into
L extending f . We claim that F = K. If not, let b 2 K \ F . We will show that
we can extend f to F (b). Since F is henselian and kB has characteristic zero,
by Theorem 5.14, b is transcendental over F .

We can find a pseudocauchy sequence (a↵) in F of transcendental type with
no pseudolimit in F such that (a↵)  b, (a↵) has no pseudolimit in F and
(v(p(a↵)) is eventually constant for p 2 F [T ].

By @1-saturation, we can find c 2 L such that (f(a↵))  c. Extend f to
F (b) by x 7! c. For p 2 F [T ],

vL(f(p(b))) = vL(f(p)(b)) = vL(f(p)(f(a↵))) = vL(f(p(a↵)) = f(v(p(a↵)) = f(v(p(b)))

for large enough ↵. Similarly, ac(p(b)) = ac(p(a↵)) for large enough ↵ and it
follows that f(ac(p(b))) = acL(f(p(b))). But this contradicts the maximality of
F .

This completes the proof.
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6.2 Consequence of Quantifier Elimination

Let T0 be the theory in the language of three sorted valued fields asserting that
we have (K,�,k) where K is a henselian valued field where � is the value group
and k is a the residue field.

Corollary 6.11 (Ax-Kochen, Eršov) Let (K,�,k) be a henselain valued field

with characteristic zero residue field. Let T� be the theory of the value group in

the language of ordered groups and Tk be the theory of the residue field in the

language of rings. Then T = T0 [ T� [ Tk is complete.

Proof Let K and L be models of T and let K � K⇤ and L � L⇤ be @1-
saturated elementary extensions. We can define angular component maps onK⇤

and L⇤. Consider the substructure (Q, {0},Q). Since T� and Tk are complete,
the identification of this structure in K⇤ and L⇤ is a �-embedding. Let K 0 be
a countable elementary submodel of K⇤ in the Pas-language. By Theorem 6.3,
we can extend this to a �-embedding of K into L⇤. Let � be any sentence in
the language of valued fields. There is  a disjunction of �-sentences equivalent
to �. Then

K |= �, K⇤
|= �, K 0

|=  , L⇤
|=  , L⇤

|= �, L |= �.

⇤

Corollary 6.12 Let U be an nonprinciple ultrafilter on the set of primes. Then

Y
Qp/U ⌘

Y
Fp((T ))/U .

In particular, for any sentence in the language of valued fields Qp |= � for all

but finitely many primes p if and only if Fp((T )) |= � for all but finitely many

primes p.

Proof
Q

Qp/U and
Q

Fp((T ))/U are henselian valued fields with value groupQ
Z/U and characteristic zero residue field. Hence they are elementarily equiv-

alent.
If Qp |= � for all but finitely many primes and D is an infinite set of primes

where Fp((T )) |= ¬�, let U be an ultrafilter on the primes such thatD 2 U . Then,
by the Fundamental Theorem of Ultraproducts

Q
Qp/U |= � and

Q
Fp((T ))/U |=

¬�, a contradiction. The converse is similar. ⇤
Exercise 6.13 Show that if the Continuum Hypothesis is true then

Q
Qp/U ⇠=Q

Fp((T ))/U .

We will discuss applications of this in the next section.

Corollary 6.14 Suppose (K,�,k) is a valued field with angular component and

T� and Tk have quantifier elimination, then every formula is equivalent to a

quantifier free formula.
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Proof Every �-formula is equivalent to a quantifier free formula. ⇤
Exercise 6.15 Let K ⇢ L be henselian valued fields of characteristic zero.
Suppose �K � �L and kK � kL. Show that K � L.

We can generalize Corollary 5.17 to drop the assumption that our field is
ordered and the valuation ring is convex.

Corollary 6.16 Let K be a henselian valued field with real closed residue field

and divisible value group. Then K is real closed.

As in ACVF in equicharacteristic zero henselian valued fields the resiude
field and value group are stably embedded and orthogonal.

Exercise 6.17 Let (K,�,k) be a henselian valued field with characteristic zero
residue field. Any definable subset of �m

⇥ kn is a finite union of rectangles
A⇥B where A ✓ �m is definable in the group language and B ⇢ kn is definable
in the ring language.

NIP

Not all theories of henselian valued fields have NIP. For example the theory ofQ
Qp/U has the independence property since the pseudofinite field

Q
Fp/U has

the independence property.

Exercise 6.18 [Duret] [14] Show that the theory of any infinite pseudofinite
field has the independence property. In particular, show that for any distinct
a1, . . . , am there are bI for I ✓ {1, . . . ,m} such that ai+bJ is a square if and only
if i 2 J . [Recall that in an infinite pseduofinite field every absolutely irreducible
variety has a point.]

Indeed the theory of
Q

Qp/U is NTP2. In fact, failure of NIP in the residue
field is the only obstruction to NIP. Delon [6] proved that a Henselian valued
field with characteristic zero residue field has NIP if and only if the theories of
the residue field and the value group have NIP. But Gurevich and Schmitt [18]
showed that all theories of ordered abelian groups have NIP.

Theorem 6.19 (Delon) Henselian valued field with characteristic zero residue

fields have NIP if and only if the theory of the residue field has NIP and the

theory of value group has NIP.

Corollary 6.20 Henselian valued field with characteristic zero residue fields

have NIP if and only if the theory of the residue field has NIP.

We will give a proof of Delon’s theorem from Simon [31]. We will use an
alternative characterization of the independence property (see [31] 2.7).

Lemma 6.21 A formula �(x,y) has the independence property if and only if,

in a suitably saturated model, there is an indiscernible sequence (x0, x1, . . . ) and
b such that �(xi,b) holds if and only if i is even.
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Lemma 6.22 Let (K,�,k) be a valued field with angular component, f(X) =
a0 + a1X + · · · + adXd

2 K[X] and let x0, x1, . . . be a sequence of elements of

K such that v(x0), v(x1), . . . is strictly increasing or strictly decreasing. There

is r  d and t 2 N such that

v(f(xi)) = v(arx
r

i
) < v(ajx

j

i
) and ac(f(xi)) = ac(arx

r

i
)

for all i � t and j 6= r.

Proof Consider the cut v(xi) makes with respect to the finite set X =

{
v(aj)�v(ak)

k�j
: 0  i < j  d}. Since v(xi) is strictly increasing or strictly

decreasing, there is an t such that for all v(xi) are not in X and realize the
same cut over X for i � t.

Note that if v(aj)�v(ak)
k�j

< v(xi), then v(ajx
j

i
) < v(akxk

i
). Choose r such

that v(arxr

i
) is minimal, then r is unique and works for all i � t. In this case,

v(f(xi)) = v(arxr

i
) and ac(f(xi)) = ac(arxr

i
) for i � t, as desired. ⇤

Lemma 6.23 Let (K,�,k) be an @1-saturated valued field with angular com-

ponent and let x0, x1, . . . be a sequence of indiscernibles in K. Then there are

indiscernible sequences g0, g1, . . . of indiscernibles in � and b0, b1, . . . of indis-

cernibles in k such that for any f 2 K[X] there is r and � 2 � such that

v(f(xi)) = � + rgi and there is q 2 k[x] such that ac(f(xi)) = q(bi) for all large

enough i.

Proof
case 1 The sequence v(x0), v(x1), . . . is nonconstant.

We take gi = v(xi) and bi = ac(xi). Then by indiscernibility it is either
strictly increasing or strictly decreasing and we can apply the previous lemma
to conclude that v(f(xi)) = v(arxr

i
) and ac(f(xi)) = ac(arxr

i
) for large enough

i. Thus the lemma is true if we take � = v(ar) and q(X) = arXr.

From now on we assume that v(x0), v(x1), . . . is a constant sequence. Let
yi = xi � x0. The sequence v(y0), v(y1), . . . is not strictly increasing. If it were,
then

v(xi � x1) = v((xi � x0)� (x1 � x0)) = v(yi � y1) = v(y1).

But then the sequence (v(xi � x1)) is constant, while the sequence v(xi � x0) is
increasing, contradicting indiscernibility.

case 2 The sequence v(y1), v(y2), . . . is decreasing.
In this case we will take gi = v(yi+1), ai = ac(yi+1. Let f(X) 2 K[X].

There is h(X) 2 K[X] such that f(xi) = f(x0 + yi) = f(x0) + h(yi) for all
i > 0. As in case 1, we can apply the previous lemma applied to the sequence
y1, y2, . . . .

case 3 The sequences (v(yi)) and (ac(yi)) are constant.
Then

v(x2 � x1) = v(y2 � y1) > v(y1) = v(y2) = v(x2 � x0)
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Find x! 2 K such that x0, x1, . . . , x! is an indiscernible sequence of order type
! + 1. Let zi = x! � xi. By indiscernibility, v(z1), v(z2), . . . is an increasing
sequence. Let gi = v(zi+1) and ai = ac(zi). For f(X) 2 K[X] as in case 2 there
is h(X) 2 K[X] such that for i > 0 f(xi) = h(zi) using the lemmas we proceed
as in the previous cases.

case 4 The sequence v(yi) is constant but the sequence (ac(yi)) is not.
In this case let gi = v(y0), a constant sequence, and let bi = ac(yi).
For any f(X) 2 K[X] we can find h(X) 2 K[X] such that

f(x0 + Y ) = h(yi) =
dX

n=0

anY
n.

Let A ⇢ {0, . . . , d} be the set of n such that v(an) + ng0 is minimal. Let
q(X) =

P
n2A

ac(an)Xn. For su�ciently large i, q(ac(yi)) 6= 0. But then

v(f(xi)) = v

 
dX

n=0

any
n

i

!
= v

 
X

n2A

any
n

i

!
= v(an) + ng0 = v(an) + ngi

and
ac(f(xi)) = q(ac(yi))

where n is any fixed element of A and i is su�ciently large. ⇤
We are now ready to prove Delon’s Theorem. By the Pas quantifier elimi-

nation and the basic facts about NIP from Lemma 4.21. it su�ces to show that
formulas of the following form have NIP.

1. f(x,y) = 0, f 2 K[X,Y] and x,y are variables in the home sort;

2. �(x, t1(y), . . . , tm(y)) where � is a formula in the language of ordered
groups, y are variables from the home and value group sort and t1, . . . , tm
are terms with values in the value group sort;

3.  (x, t1(y), . . . , tm(y)) where  is a formula in the language of rings , y
are variables from the home and residue field sort and t1, . . . , tm are terms
with values in the residue sort;

4. ✓(v(f1(x,y)), . . . , v(fm(x,y)), z) where ✓ is a formula in the language or-
dered groups x and y are variables in the home sort, f1, . . . , fm 2 Z[X,Y]
and z are variables in the ordered group;

5. �(ac(f1(x,y)), . . . , ac(fm(x,y)), z) where � is a formula in the language
rings x and y are variables in the home sort, f1, . . . , fm 2 Z[X,Y] and z
are variables in the ring sort;

Formulas of types 1, 2 and 3 are easily seen to by NIP. If the x variable is of
degree d in f(x,y), then f(x,y) = 0 fails to shatter a set of size d + 2. Thus
formulas of the first type are NIP. Formulas of the second and third type are
NIP by our assumptions on the theories of the residue field and the value group.
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Consider ⇥(x,y, z) = ✓(v(f1(x,y)), . . . , v(fm(x,y)), z) of type 4. If ⇥ has
the independence property, then we can find a sequence of indiscernibles in K
(x1, x2, . . . ) and b1,b2 such that ⇥(xi,b1,b2) holds if and only if i is even.
By Lemma 6.23 there is are g0, g1, . . . an indiscernible sequence of elements
in the value group such that for j = 1, . . . , n there are hj 2 � and rj 2 N
such that v(fj(xi,b1) = hj + rjgj for su�ciently large i. Consider the formula
⇥⇤(v,h,b2) which is ✓(h1+r1v, . . . , hm+rmv,b2) where v is a variable over the
value group. Since the theory of the value group has NIP, ⇥⇤(gi,h,b2) is either
eventually true, or eventually false for large i, but ⇥⇤(gi,h,b2) is equivalent to
⇥(xi,b1,b2) for large i. Thus ⇥ does not have the independence property.

The argument for formulas of type 5 is similar.

6.3 Artin’s Conjecture

We say that a field K is a Cm-field if whenever f(X1, . . . , Xn) is a homogeneous
polynomial of degree d where n > dm, then f has a nontrivial zero in K.

Exercise 6.24 Show that K is a Cm-field if and only if every homogeneous
polynomial of degree dm + 1 has a nontrivial zero in K

Tsen and Lang [23] proved that if F is a finite field then F ((T )) is a C2 field
and Artin conjecture that each Qp is a C2-field. This is false.

Exercise 6.25 [Terjanian] Let

p(X,Y, Z) = X2Y Z +XY 2Z +XY Z2 +X2Y 2 +X2Z2
�X4

� Y 4
� Z4

let
q(X1, . . . , X9) = p(X1, X2, X3) + p(X4, X5, X6) + p(X7, X8, X9)

and
r(X1, . . . , X18) = q(X1, . . . , X9) + 4q(X10, . . . , X18).

a) Show that if (x, y, z) 2 Z3 are not all even, then p(x, y, z) = 3(mod 4).
b) Show that if (x1, . . . , x9) 2 Z9 are not all even , then q(x1, . . . , x9) 6=

0(mod 4).
c) If x = (x1, . . . , x18) 2 Z18

2 and some xi is a unit, then v2(x) = 0 or 2.
d) Conclude that Artin’s conjecture fails for Q2 with n = 18 and d = 4.

Nevertheless, the Ax, Kochen, Eršov transfer principle tell us is true for
su�ciently large p.

Corollary 6.26 Fix d. There is a prime p0 such that for all primes p � p0
every homogenous polynomials of degree d in n > d2 variables has a nontrivial

zero in Qp.

Proof The statement that every homogeneous polynomial of degree d in d2+1
variables has a nontrivial zero is a first order sentence that is true in every
Fp((T )) and hence true in Qp for p su�ciently large. ⇤
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The Tsen–Lang Theorem

We will prove that F ((T )) is C2 if F is finite.

Lemma 6.27 If F is a finite field with |F | = q and n < q � 1, then
X

x2F

xn = 0

Proof Let a 2 F⇥ with an 6= 1. Since x 7! ax is a bijection,
X

xn =
X

(ax)n = an
X

xn.

Since an 6= 1,
P

xn = 0. ⇤

Theorem 6.28 (Chevalley–Warning) Let F be a finite field of characteristic

p and let f1, . . . , fm 2 F [X1, . . . , Xn] be polynomials of degrees d1, . . . , dm with

n >
P

di. Then the number of zeros of f1 = · · · = fm in F is divisible by p.
In particular, if the polynomials f1, . . . , fm are homogeneous, there is a non-

trivial zero in F .

Proof Let F have characteristic p and cardinality q. Let N be the number of
zeros of f1 = · · · = fm = 0 in Fn. Note that for all x 2 Fn

kY

i=1

(1� fi(x)
q�1) =

(
1 if f1(x) = · · · = fk(x) = 0

0 otherwise
.

Thus the number of zeros of f is

N =
X

x2Fn

kY

i=1

(1� fi(x)
q�1) =

X

x2Fn

X

j2J

cjx
j =

X

j2J

cj

 
X

x2Fn

xj

!
(mod p)

where J = {j = (j1, . . . , jn) :
P

ji  (q � 1)
P

di}.
Fix j = (j1, . . . , jn) 2 J . Note that, since n >

P
di, we must have some

jbi < q � 1. Then
X

x2Fn

xj =
nY

i=1

X

x2F

xji

Thus, by the lemma,
P

x2F
xjbi = 0 and N = 0(mod p). ⇤

We can combine this with Greenleaf’s Theorem 2.27.

Corollary 6.29 If f1, . . . , fm 2 Z[X1, . . . , Xn] where fi has degree di and n >P
di, then for all but finitely many primes p, f1 = · · · = fm = 0 has a solution

in Zp.

Lemma 6.30 Let F (T ) be the field of rational functions over a finite field F .

Let f 2 F (T )[X1, . . . , Xn] be homogeneous of degree d2 < n. Then f has a

nontrivial zero in F (T )n.
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Proof Clearing denominators, we may assume f 2 F [T ][X1, . . . , Xn]. We will
look for a solution of the form (x1, . . . , xn) where for some suitably large s

xi = yi,0 + yi,1T + · · ·+ yi,sT
s.

Let r be the maximum of the degrees of the coe�cients of f . Choose s >
(d(r + 1)� n)/n� d2. Then n(s+ 1) > d(ds+ r + 1) Then

f(x1, . . . , xn) = f0(y) + f1(y)T + · · ·+ fds+r(y)T
ds+r.

Since n(s+1) > d(ds+ r+1), by Chevalley-Warning, there is a nontrivial zero
y = (y1,0, . . . , yn,s) 2 F . ⇤

Corollary 6.31 Let f 2 F ((T ))[X1, . . . , Xn] be homogeneous of degree d with

d2 < n and F is a finite field. Then f has a nontrivial zero in F ((T )).

Proof We may assume f 2 F [[T ]](X1, . . . , Xn). For k su�ciently large let
f |k(X1, . . . , Xn) be the polynomial over F [T ] obtained by truncating all the co-
e�cients of f to polynomials of degree at most k. By the lemma fk(X1, . . . , Xn)
has a nontrivial zero ak 2 F (T )n. We may assume that v(ak,i) � 0 for all i and
some v(ak,i) = 0. Since the residue field is finite we see that F [[T ]] is compact
so we can choose a Cauchy subsequence of the ak that converges to a nonzero
element of F [[T ]]n . ⇤
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