
7 The Theory of Qp

7.1 p-adically Closed Fields

We next turn our attention to the theory of Qp. If K ⌘ Qp, then (v(G),+, <
, 0, v(p)) ⌘ (Z,+, <, 0, 1). We know that the complete theory of (Z,+, <, 0, 1)
is just Presburger arithmetic which is axiomatized by saying that we have an
ordered abelian group with least positive element 1 such that for any x and
n � 2 there is a y such that x = ny or x = ny + 1 . . . or x = ny + n� 1.

We have quantifier elimination in Presburger arithmetic once we add either
equivalence relation x ⌘n y for x = y(mod n) or predicates for the elements
divisible by n, for all n � 2.

Definition 7.1 We say that a valued field (K, v) is p-adically closed if K is
henselian of characteristic zero, the residue field is Fp and the value group in
a model of Presburger arithmetic and v(p) is the least positive element of the
value group.

Lemma 7.2 Let K be p-adically closed, x 2 K and v(x) = gn + i where 0 

i < n, then there is m 2 Z with 0  v(m) < n and y 2 K such that x = myn.

Proof Suppose K is p-adically closed and v(x) = gn + i. Choose z such that
v(z) = g, then v( x

pign ) = 0. There is 0 < r < p2v(n)+1 such that x

pizn =

r(mod p2v(n)+1) and p6 | r. Let c = x

rpizn . Then c = 1(mod p2v(n)+1). Consider

f(X) = Xn
� c, then v(f 0(1)) > 2v(n) and v(f 0(1)) = v(n). By Lemma 2.6 ii),

there is y 2 F such that yn = c. Then x = rpi(yz)n and 0  v(rpi) < n. ⇤

Lemma 7.3 Suppose F is a p-adically closed field, A ⇢ F and E is the algebraic

closure of Q(A) in F . Then E is p-adically closed.

Proof Since E is algebraically closed in F , E is henselian. Clearly E has
characteristic zero, kE = Fp and v(p) = 1. So we need only show v(E) is
a Z-group. Let x 2 E. There is y 2 F and m 2 Z such that x = myn

and 0  v(m) < n. Since E is algebraically closed in F , y 2 E, but then
v(x) = nv(y) + v(m) as desired. ⇤

We will show that the theory of p-adically closed fields has quantifier elim-
ination in the Macintyre language LMac = {+,�, ·, |, P2, P3, . . . , 0, 1} where Pn

is a predicate picking out the nth-powers. The symbol | is actually unnecessary
as we can always define | in a quantifier free way using P2 as in Exercise 2.11.

We begin with some useful lemmas about nth-powers.

Lemma 7.4 Let K be henselian of characteristic zero. Let a 2 K⇥
and � =

v(a) + 2v(n). Then a is an nth
-power in K if and only every b 2 B�(a) is an

nth
-power in K.

Proof Suppose b 2 B�(a). Let c = b/a.

v(1� c) = v(a� b)� v(a) > 2v(n).
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Consider f(X) = Xn
� c. Then

v(f(1)) = v(1� c) > 2v(n) and v(f 0(1)) = v(n).

Thus by Lemma 2.6 ii), there is u 2 K un = c. Then aun = b and a is an
nth-power if and only if b is. ⇤

Corollary 7.5 In a henselian field of characteristic zero, the set of nonzero

nth
-powers is open.

Corollary 7.6 Suppose K is henselian of characteristic zero with residue field

k of characteristic p where v(p) is the least positive element of the value group.

Suppose F ⇢ E ✓ K, E/F is immediate and a 2 E. Then there is b 2 F such

that v(a� b) > v(a)+2v(n) and for any such b we have that a 2 Kn
if and only

if b 2 Kn
.

Proof Since F (a)/F is immediate, there is b0 2 F such that v(a� b0) > v(a).
We can then find a b1 2 F such that

v(a� b1) > v(a� b0) � v(a) + v(p).

Continuing inductively, we can find b 2 F such that v(a � b) > v(a) + 2v(n).
By the lemma, a is an nth-power in K if and only any such b is. ⇤

Lemma 7.7 Suppose K is henselian of characteristic zero and residue field Fp

and v(p) is the least positive element of the value group. Let F ⇢ K and suppose

g 2 v(K)\v(F ), ng 2 v(F ) Then there is b 2 F with v(b) = g such that bn 2 F .

Proof Let a 2 F and c 2 K such v(c) = g and v(a) = ng. Since K and
F have the same residue field, without loss of generality we can choose a such
that cn = a(1 + ✏) where v✏ > 0. We can find 0  m < p2v(n)+1 such that
m = ✏(mod p2v(n)+1). Then cn = a(1 +m)(1 + �) where v(�) > 2v(n). Since K
is henselian, there is u 2 K such that un = 1 + �. But then (c/u)n = a(1 +m)
and v(c/u) = g. ⇤

Quantifier elimination will follow from the following embedding result.

Theorem 7.8 (Macintyre[29]) Suppose (K, v) and (L,w) are p-adically closed
fields where K is countable and L is @1-saturated. Suppose A is a subring of K
and f : A ! L is an LMac-embedding. Then f extends to an LMac-embedding

of K into L.

This will be proved by iterating the following lemmas. Throughout we as-
sume that K and L satisfy the hypotheses of the theorem. If A ⇢ K and f is
an LMac-embedding, we will think of this as also defining a map on the value
group by f(v(a)) = w(f(b)).

Lemma 7.9 Suppose A is a subring of K and f : A ! K is and LMac-

embedding, then we can extend f to F the fraction field of A.
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Proof Since

w(f(a)/f(b)) = w(f(a))� w(f(b)) = f(v(a))� f(v(b)) = f(v(a/b),

the natural extension preserves divisibility. Since

Pn(a/b) , Pn(ab
n�1),

the predicates Pn are preserved. ⇤

Lemma 7.10 Suppose F ⇢ K and f : F ! L is an LMac-embedding, then f
extends to an LMac-embedding of Fh

into L

Proof Let f also denote the unique extension to a valued field embedding of
Fh into F . Since Fh/F is immediate, for all n and all a 2 Fh there is a b 2 F
such that v(b� a) > v(a) + 2v(n). Then v(f(a)� f(b)) > v(f(a)) + 2v(n) and

Pn(a) , Pn(b) , Pn(f(b)) , Pn(f(a).

Hence f is an LMac-embedigin ⇤
Our next goal is to show that if we have an LMac-embedding of a subfield F

of K into L, that it extends to the algebraic closure of F in K. The next lemma
shows that if we can extend to a valued field embedding it will automatically
be an LMac-embedding.

Lemma 7.11 If F ✓ K is algebraically closed in K then any valuation pre-

serving embedding of F into L preserves the predicates Pn.

Proof Clearly if Pn(a), then a is an nth-power inK and, since F is algebraically
closed in K there is b 2 F such that bn = a. But then f(b)n = f(a) and
Pn(f(a)).

Suppose Pn(f(a)). Suppose, for contradiction, that all of the nth-roots of
f(a) are in L \ f(K).

Note that �K/�F is torsion free. Suppose not. Let n be minimal such that
there is g 2 �K \�F such that ng 2 �F . By Lemma 7.7, we can find a 2 F with
v(a) = ng such that a has an nth-root in K. Then a has an nth-root in F .

It follows that �L/�f(F ) is also torsion free. To see this, note that if g 2 �F
and n 6 | g there is 1  i < n and b 2 F such that g = nv(b) + i. Then
f(g) = w(f(bn)) + i and n6 | f(g).

By Exercise 2.4 F is henselian and hence f(F ) is henselian and, by Theorem
5.14 has no proper algebraic immediate extensions.

Let b 2 L with bn = f(a). Then f(F )(b) is not an immediate extension of
f(F ). Since the residue field does not extend, the value group must extend.
Since the extension is algebraic, there is g 2 �L \ �f(F ) such that mg 2 �f(F )

for some m, but this contradicts that �L/�f (F ) is torsion free. ⇤

Lemma 7.12 Suppose F ✓ K is henselian and we have an LMac-embedding

f : F ! L. Let K0 be the algebraic closure of F in K. Then we can extend f
to an LMac-embedding of K0 into K.
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Proof By @1-saturation it su�ces to show that we can extend f to any E
where F ⇢ E ✓ K and E/F is a finite algebraic extension. Since F is henselian
and unramified, E/F is not immediate. In particular �F ⇢ �E ⇢ Q�F . Thus
�E/�F is finite abelian group. Suppose

�E/�F = hg1/F i � · · ·� hgm/F i

where hgi/F iis cyclic over order ni. Then nigi 2 �F and ni is minimal with
this property. By Lemma 7.7, there are a1, . . . , am 2 E such that v(ai) = gi
and ani

i
2 F . Since F is henselian, so is F (a1, . . . , am). But E/F (a1, . . . , am) is

immediate and, hence, F (a1, . . . , am) = E.
Since f is an LMac-embedding, there are b1, . . . , bm 2 L such that bni

i
=

f(ani
i
). We claim that we can extend f to a valuation preserving embedding of

E into L with ai 7! bi.
We argue this in detail in the case m = 1. Suppose a 2 E, v(a) = g, n is

minimal such that ng 2 �F and an 2 F . Suppose x = cnan�1 + . . . c1a + c0 2

E(a). By the minimality of n, v(ci) + iv(a) 6= v(cj) + jv(a) for any i < j < n.
Thus Xn

�an is irreducible over F and v(x) = min v(ci)+ iv(a). It follows that
Xn

�f(an) is irreducible over f(F ) and that if b 2 L such that bn = f(am), then
the extension of f to F (a) obtained by sending a to b is valuation preserving.
The general case is done similarly by induction. ⇤

The full embedding result will follow from the next lemma.

Lemma 7.13 Suppose F ⇢ F1 ✓ K f : F ! K is a valued field embedding. F
and F1 are algebraically closed in K and F1/F is transcendence degree 1. Then

we can extend f to F1.

Proof There are two cases to consider.

case 1 F1/F is immediate.
Let a 2 F1 \ F . We can find a pseudocauchy sequence of transcendental

type (a↵)  a such that (a↵) has no pseudolimit in F . We can find b 2 L a
pseudolimit if (f(a↵)) and can extend f to a valued field embedding of F (a)
into L by sending a to b. We can further extend f to a valued field embedding
of F (a)h into L. But F1/F (a) is an immediate algebraic extension, thus F1 =
F (a)h and we have the desired embedding.

case 2 F1/F is not immediate.
By @1-saturation, it su�ces to show that we can extend the embedding to

any F ⇢ E ✓ F1 where E/F is finitely generated. Then �E/�F is finitely
generated and torsion free, since E/F has transcendence degree one we must
have �E = �F �Zv(a) for some a 2 E transcendental over F . We can find b 2 L
transcendental over f(F ) such that the type w(b) realizes over v(�F ) is the image
of the type v(a) realizes over �F . We claim that sending a 7! b gives a valued
field embedding of F (a) into L. Suppose x 2 F [a] and x =

P
ci
ai where each

ci 2 F . By choice of a, all v(ci)+ iv(a) are distinct. Choose j such that v(cj)+
jv(a) is minimal. Then v(x) = v(cj)+jv(a) and, by choice of b, w(f(cj))+jw(b)
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is minimal and w(f(x)) = f(v(x)), as desired. There is a unique valuation
preserving extension of f from F (a)h into L. Since E/F (a) is an immediate
extension, F (a)h ✓ E. Thus we can extend f to a valuation preserving extension
of E into L. By @1-saturation, we can extend the embedding to F1 ⇤

Corollary 7.14 (Macintyre) The theory of p-adically closed fields is admits

quantifier elimination.

Lemma 7.15 Suppose K is p-adically closed and x 2 Q then x is an nth
-power

in K if and only if x is an nth
-power in Qp.

Proof The algebraic closure of Q in K is an immediate extension of Q Thus
the henselization Qh is the algebraic closure of Q in K. My uniqueness of
henselization, the algebraic closure of Q in any two p-adically closed field are
isomorphic. Thus Pn(K) \Q does not depend on K. ⇤

Corollary 7.16 The theory of p-adically closed fields is complete.

Proof By the lemma the rational numbers with Pn interpreted as Pn(Qp)\Q
is a substructure of any p-adically closed field. Thus, by quantifier elimination,
the theory is complete. ⇤
Exercise 7.17 a) Show f(x) = 0 if and only if P2(pf(x)2).

b) Show that if p 6= 2, f(x)|g(x) if and only if P2(f(x)2 + pg(x)2).
c) Give a version of b) for p = 2.
d) Conclude that every definable set is a Boolean combination of sets of the

form Pk(f(x)).

7.2 Consequences of Quantifier Elimination

Throughout this section K will be a p-adically closed field.

Lemma 7.18 The set of nonzero nth
-powers in K is clopen.

Proof By Lemma 7.4 if a is an nth-power, then B2v(n)+v(a)(a) is contained in
the nth powers. Thus Pn \ {0} is open. If x is not in Pn, then x 2 a(Pn \ {0}
for some non nth-power a. Thus the set of non nth-powers is open. ⇤

Corollary 7.19 If X ✓ K is definable and infinite, then X has non-empty

interior.

Proof Let X be definable. By quantifier elimination X is the union of finitely
many sets of the form

Y = {x 2 K : f1(x) = · · · = fm(x) = 0 ^ g(x) 6= 0 ^
n^

i=1

(Pki(hi(x)) ^ hi(x) 6= 0)
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for some polynomials fi, g, hj 2 kp[X]. Note that we do not need conjuncts of
the form ¬Pk since

¬Pk(x) ,
m_

i=1

Pk(lix)

for appropriately chosen m and l1, . . . , lm 2 K. If Y is infinite, then all of the
fi must be trivial, in which case Y is open. ⇤
Exercise 7.20 More generally, suppose X ✓ Km

p
is definable with non-empty

interior. Show that if S1, . . . , Sm is a partition of X into definable sets, then
some Si has non-empty interior.

As in Exercise 4.18, we can show that if K is a p-adically closed field and
A ✓ Km+n is definable, then there is an N such that Ax is finite if and only if
|Ax|  N .

Exercise 7.21 Let U ✓ Qp be open and let f : U ! Qp be definable.
a) Show that there is a 2 U such that f is continuous at a. [Hint: This is

similar to the proof in [30] 3.3.24 and uses the local compactness of Qp.]
b) Show that {x : f is discontinuous at x} is finite.
c) Prove that the same is true over any p-adically closed field K.

Exercise 7.22 Let U ✓ Kn and let f : U ! K be definable. Then there is
F 2 Qp[X, Y ] such that F (a, f(a)) = 0 for all a 2 U , i.e., f is algebraic.

There is a p-adic version of the Implicit Function Theorem (see for example
[37] §II). Once we know f is algebraic and continuous except at finitely many
points we can conclude it is analytic except at finitely many points.

Skolem functions

We will show that p-adically closed fields have definable Skolem functions. We
start with a partial result due to Denef for functions with finite fibers.

Theorem 7.23 (Denef [8]) Let K be p-adicaly closed. Suppose A ✓ Km+1
is

C-definable, B = {x 2 Km : 9y (x, y) 2 A} and for all x 2 B, |{y 2 K : (x, y) 2
A}|  N . Then there is an C-definable f : B ! K such that (x, f(x)) 2 A for

all x 2 B.

Proof We prove this by induction on N . The result is clear if N = 1. Assume
N > 1. For x 2 B, let Ax = {y : (x, y) 2 A} Without loss of generality, we may
assume that |Ax| = N for all x. Replace A by

{(x, y) 2 A : v(y) is minimal in {v(z) : z 2 Ax}}.

Then using induction we may, without loss of generality assume that |Ax| = N
and v(y1) = v(y2) whenever x 2 B and y1, y2 2 Ax.

Let k = �(pv(N)+1) where � is Euler’s phi-function.

claim For all x 2 B, if Ax = {y1, . . . , yN} then not all the yi are in the same
coset of kth-powers.
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Suppose they are. Fix z such that v(z) = v(y1) = · · · = v(yN ) and let
yi = zy0

i
where p6 | y0

i
. Then all of the y0

i
are in the same coset of kth-powers..

Suppose p6 | y, z and y = zak. By Euler’s theorem ak = 1mod pv(N)+1. Thus
y and z are congruent mod pv(N)+1. Hence there is a c such that p 6 | c and
y0
i
= cmod pv(N)+1 for all i/ But

P
y0
i
= 0. Thus Nc = 0(mod pv(N)+1), a

contradiction.

Fix any ordering of the cosets of kth-powers. We can assume without loss
of generality that for all (x, y) 2 A, y is in the minimal coset of kth-powers
represented in Ax. We are then done by induction. ⇤

Note that the Skolem function defined in Denef’s proof are invariant, i.e., if
Ax = Az then f(x) = f(z).

We next show that the restriction to finite fibers in unnecessary.

Theorem 7.24 (van den Dries [10]) p-adically closed fields have definable

Skolem functions.

Proof Let �(x, y) be a formula with parameters from A. We want to show
there is an A-definable function f such that if a 2 Km and 9y �(a, y), then
�(a, f(a)).

Consider the type

�(v) = {9y �(v, y),¬�(v, f(v)) : f is an A-definable function}.

If � is inconsistent, then there are finitely many definable functions f1, . . . , fn
such that

{9y �(v, y),¬�(v, f1(v)), . . . ,¬�(v, fn(v))}

is inconsistent. Define

F (a) =

(
0 ¬9y �(a, y)

fi(a) i is least such that �(a, fi(a))
.

Then F is the desired definable Skolem function.
Suppose for contradiction that � is consistent. Let a realize � in F p-adically

closed. Let E be the algebraic closure of Q(A,a) in E. Then E is p-adically
closed and, by model completeness E) � F . Thus there is b 2 E such that
�(a, b). There is f 2 Q(A)[X, Y ] such that f(a, Y ) is nontrivial and f(a, b) = 0.
Let  (x, y) be

�(x, y) ^ f(x, y) = 0 ^ 9z f(x, z) 6= 0.

Then  (a, b) and {y :  (a, y)} is finite for all y. By Denef’s theorem, there is a
A-definable function g such that if 9y  (x, y) then  (x, g(x)). Thus  (a, g(a)),
contradicting that a realizes �. ⇤
Definition 7.25 Let F be a valued field. We say thatK/F is a p-adic closure of
F , if there for any p-adically closed L/F there is a unique valued field embedding
of K into L fixining F pointwise.
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Exercise 7.26 Suppose F is a valued field that is a substructure of a p-
adically closed field. Show that F has a p-adic closure K and the there are no
automorphisms of K/F . We say K/F is rigid.

In fact, van den Dries’ result preceded Denef’s. He proved the following
more general result.

Exercise 7.27 Suppose T has quantifier elimination. Then T has definable
Skolem functions if and only every model M of T8 has an extension N that is
algebraic and rigid over M.

In real closed fields we have invariant definable Skolem functions, i.e., if
A ⇢ Kn+m is definable there is a definable Skolem function f such that if
Ax = Ay, then f(x) = f(y). This is impossible in Qp.

Exercise 7.28 Let A = {(x, y) 2 Q2
p
: v(x) = v(y)}. Show that there is no

invariant definable Skolem function.

Exercise 7.29 [Definable Curve Selection] Let A ✓ Qn
p
be definable. Let a

be in the closure of A but not in A. Then there for any ✏ > 0 there is a definable
f : B✏(0) ! A such that f(0) = a and for x 6= 0, f(x) 2 A and v(f(x)) > f(x)

Dimension

As a topological space there can be no good notion of dimension in Qp.

Exercise 7.30 Show that Qp and Q2
p
are homeomorphic.

Nevertheless, there is a good notion of dimension that works for definable
sets and maps.

We begin with an relatively approach to dimension due to van den Dries [11]
that works in several theories of fields.

Definition 7.31 Let L be a language with constant symbols C and let T be
an L-theory of fields. We say that T is algebraically bounded if for any formula
�(x, y) there are polynomials f1, . . . , fm 2 Z[C][X, Y ] such that if K |= T ,
a, b 2 K, {y 2 K : �(a, y)} is finite and �(a, b), then fi(a, b) = 0 for some i,
where fi(a, Y ) is not identically zero.

Exercise 7.32 Use quantifier elimination to show that algebraically closed
fields, real closed fields, algebraically closed valued fields and p-adically closed
fields are algebraically bounded.

Definition 7.33 Suppose A ✓ Km is definable, say �(v) is a formula with
parameters from K defining A. We define dim A, the dimension of A, to be
the largest l  m such that there is K � L and a = (a1, . . . , am) 2 L with
L |= �(a) and td(K(a)/K) = l, where td(L/K) denotes the transcendence
degree of L/K.

Exercise 7.34 Show that this definition agrees with the usual notions of di-
mension in algebraically closed fields and real closed fields.
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Exercise 7.35 [van den Dries] Let T be an algebraically bounded theory and
K |= T . Our notion of dimension has the following properties. Let A and B be
definable sets in Km for some m.

a) Show dim A = 0 if and only if A is finite;
b) Show dim (A [B) = max(dim A, dim B);
c) Show that if f is a definable function, then dim f(A)  dim A;
d) Show A ✓ Km+n, then {a 2 Km : dim Aa = i} is definable for each

i  n.

Exercise 7.36 Let A ✓ Km+n. For i  n let Bi = {a 2 Km : dim Aa = i}.
Show that dim A = max(i+ dim Bi).

Exercise 7.37 a) Suppose U ✓ Qp is open. Show that dim U = m.
b) Suppose A ✓ Qm

p
is definable, then dim A is the largest l such that there

is a projection from ⇡ : Qm
p

! Ql
p
such that ⇡(A) has nonempty interior.

Exercise 7.38 Use quantifier elimination to show that if A ✓ Qm
p

is definable
and dim A < m then there is a nonzero polynomial f 2 Qp[X1, . . . , Xm] such
that A is contained in the hypersurface p(x) = 0.

In o-minimal expansions of real closed fields there is a notion of Euler char-
acteristic for definable sets. Basically a point has Euler characteristic 1, an open
cell in Kn has Euler characteristic (�1)n and if we partition a definable set into
cells, then the Euler characteristic is the sum of the Euler characteristics of the
cell. van den Dries [14] showed the notion is independent of the partition chosen
and that two definable sets are in definable bijection if and only if they have
the same dimension and Euler characteristic.

The next exercises based on results of Cluckers and Haskell [6] tells that
there is no good definably invariant notion of Euler characteristic in Qp. Fix
p 6= 2–though similar results can be proved for p = 2. Let Z⇤

p
denote Zp \ 0,

let P2 be the nonzero squares in Zp, let Z1
p
be the elements of Zp with angular

component 1 and let P (1)
2 denote P2 \ Z(1)

p . Note that

Z⇤

p
=

p�1[

m=1

mZ(1)
p

.

Let X t Y denote the disjoint union of X and Y . Say X ⇠ Y if there is a
definable bijection between X and Y

Exercise 7.39 a) Show that P2 t P2 ⇠ Z⇤
p
. [Hint: There is a definable Skolem

function f : P2 ! Z⇤
p
such that f(x)2 = x.]

b) Show that P2 t P2 t P2 t P2 ⇠ Z⇤
p
. [Hint: Recall that P2 is an index 4

subgroup of Z2
p
.

c) Conclude Z⇤
p
t Z⇤

p
⇠ Z⇤

p
.

Exercise 7.40 a) Z(1)
p is definable. [Hint: First show that

{xp�1 : x 2 Z⇤

p
} = {x : ac(x) = 1 ^ (p� 1)|vp(x)}.]
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b) Show that Z(1)
p = P (1)

2 [ pP (1)
2 .

Exercise 7.41 Show Zp t Z(1)
p ⇠ Z(1)

p . [Hint: send x 2 Zp to 1 + px and send

x 2 Z(1)
p to px.]

Definition 7.42 Let M be any structure. Let D(M) be the set of all definable
subsets of Mn for n � 1. Let F be the free abelian group with generators

bXc = {Y 2 DM) : X ⇠ Y }

for X 2 D(M) and let R be the subgroup generated by relations bX [ Y c �

bXc�bY c+bX\Y c. The Grothendieck group of M is the quotient F/E. We let
[X] = bXc/E. There is a natural multiplication induced by [X][Y ] = [X ⇥ Y ]
making it a ring which we call the Grothendieck ring and denote by K0(M).

Corollary 7.43 K0(Qp) is trivial.

Proof By Exercise 7.39
[Z⇤

p
] = [Z⇤

p
] + [Z⇤

p
].

Thus [Zp]⇤ = 0. By Exercise 7.41,

[Zp] + [Z(1)
p

] = [Z(1)
p

].

Thus [Zp] = 0. It follows that [{0}] = 0. But then for any set X 2 D(M)

[X] = [X ⇥ {0}] = [X][{0}] = 0.

⇤
This answered a question Denef asked at a meeting in 1999. At the same

meeting Bélair asked if Zp ⇠ Z⇤
p
. The next Exercise shows the answer is yes.

Exercise 7.44 a) Define f1 : p2Z⇤
p
t (1 + p2Z⇤

p
) ! (1 + p2Z⇤

p
) by

f1(y) =

8
><

>:

1 + p2(mx2) for y = 1 + pmx, x 2 Z(1)
p , 1  m < p

1 + p3mx2 for y = 1 + p2mx, x 2 Z(1)
p , 1  m < p

. Show that f1 is a bijection.

b) Define f2 : pZp t (p+ p2Z(1)
p ! p+ p2Z(1)

p by

f2(x) =

(
p+ p2(1 + px) for x 2 Zp

p+ p3x for x 2 Z(1)
p

.

Show that f2 is a bijection.

c) Let W = (1 + p2Z⇤
p
) t p2Zp t (p+ p2Z(1)

p ). Define f : W ! W \ {0} by

f(x) =

(
f�1
1 (x) for x 2 1 + p2Z⇤

p

f2(x) for x 2 p2Zp t (p+ p2Z(1)
p )

.
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Show that f is a bijection.

d) Extend f to a definable bijection between Zp and Z⇤
p
.

This is the tip of the iceberg.

Theorem 7.45 (Cluckers [5]) Two infinite subsets of Qp are in definable bi-

jection if and only if they have the same dimension.

Cell decomposition

Lemma 7.46 If U ✓ Qm
p

is open definable and f : U ! Qp is definable, then

{x : f is discontinuous at x} has dimension at most m� 1. Moreover, there is

a definable open V ✓ U such that f |V is analytic and dim (U \ V ) < m.

Proof We first proof that if U is open, then there is x 2 U such that f is
continuous at x. If there is an open U1 ⇢ U such that f |U1 is constant, then we
are done so we assume that there is no such set.

Let B0 be a closed ball in U . Given Bn open, let W be the image of Bn.
Then, by assumptions on f dim f�1(w) has dimension at most m � 1 for all
w 2 W . If there are only finitely many fibers of dimension m�1, then dim Bn 

m � 1. So {w : dim f�1(w) = m � 1} in infinite, and hence has interior. We
can find Jn ⇢ W0 open of radius at most 1/pn. Then {x 2 Bn : f(x) 2 Jn} has
dimension m and thus contains a closed ball Bn+1. Since Qp is locally compact,
there is x 2

T
Bn and, by construction, f is continuous at s.

Since {x 2 U : f is discontinuous at x} has no interior it must have dimension
at most m � 1. We argued before that there is a non-zero polynomial F such
that F (x, f(x)) = 0. Except for a set of dimension at most m � 1 at each x
there is an open V ⇢ U such that x 2 V and there is a polynomial F (X, Y )
such that on V : f is continuous, F (x, f(x)) = 0 and @F

@Y
(x, f(x)) 6= 0. Then,

by the Implicit Function Theorem, f is analytic on V . ⇤
We can now prove a cell decomposition theorem due to Scowcroft and van

den Dries [13].

Theorem 7.47 Let A ✓ Qm
p

and f : A ! Qp be definable. There is a partition

of A into definable sets U,B1, . . . , Bn such that U is open, f |U is analytic,

dim Bi = ki < m, and there is a projection ⇡i : Qm
p

! Qki
p

such that ⇡i|Bi is a

di↵eomorphism and f � ⇡�1
|⇡i(Bi) is analytic.

Proof We call the above statement �m and prove this by induction on m.
From earlier arguments it is easy to see that �1 holds.

We will also prove the following intermediate claim which we call  m. If
g1, . . . , gs 2 Qp[X1, . . . , Xm] are nonzero polynomials and

V = {x 2 Qm

p
: g1(x) = · · · = gs(x) = 0},

then V can be partitioned into finitely many pieces each of which is analytically
homeomorphic via a projection to an open set in some Qk

p
with k < m. Note

that  1 is trivially true.
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We will show that from �i and  i for i  m we can prove  m+1 and then
show that from �1, . . . ,�m�1 and  1, . . . , m+1 we can prove �m+1.

�1, . . .�m, 1, . . . m )  m+1 Let g1, . . . , gs 2 Qp[X1, . . . , Xm, Y ] and let

V = {(x, y) 2 Qm

p
: g1(x, y) = · · · = gm(x, y) = 0}.

Suppose

gi(X, Y ) =
diX

j=0

hi,j(X)Y j

where hi,j 2 Qp[X]. Let

V0 = {x 2 Qm

p
:
^

i,j

hi,j(x) = 0.}

Then V0 ⇥ Qp ✓ V and there is a bound N such that if x 62 V0, then |{y :
(x, y) 2 V }|  N is finite. This allows us to partition V = X1 [ · · ·[XN [X1

where for i  N , Xi = {(x, y) 2 V : there are exactly i distinct z 2 Qp with
(x, z) 2 V }. and X1 = V0 ⇥Qp. We deal with each Xi separately.

X1: We can apply m to V0 to partition it into finitely many setsA0, . . . , Am

where eachAi is analytically isomorphic to an open set in sumQki
p

where ki < m.
Let Bi = Ai ⇥Qp. This gives the desired decomposition of X1 = V0 ⇥Qp.

Xk: Let
C = {x 2 Qm

p
: |{z 2 Qp : (x, z) 2 V }| = k}.

We can find definable Skolem functions f1, . . . , fk : C ! Qp such that

Xk = {(x, fi(x)) : x 2 C, i = 1, . . . , k}.

By induction we can partition C into definable sets D0, . . . , Ds such that D0 is
open (possibly empty) and all of the fi are analytic on D0 and otherwise Dj is
analytically isomorphic via a projection ⇡j to an open subset of Qrj

p for rj < m
and each fj � ⇡

�1
j

|⇡j(Dj) is analytic. Then we can partition Xk into the union
of the graphs of the fi on C and the Djs and apply induction.

�1, . . .�m, 1, . . . m ) �m+1 By the previous lemma, we can find U ✓ Qm+1
p

open such that f |U is analytic and dim (A\U) < m. Since A\U has no interior,
there is g 2 Qp[X1, . . . , Xm+1] such that A \U is contained in the hypersurface
V given by g(X) = 0. Apply  m to V to obtain a partition C1, . . . , Cs where
for each j, there is a projection ⇡j that is an analytic isomorphism to an open

set in Qkj
p . Let Dj = ⇡j((A \ U) \ Cj). Using �kj we can definably partition

Dj into finitely many nice pieces, then we lift these using ⇡�1
j

. ⇤
We will later state a di↵erent cell decomposition theorem due to Denef.
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7.3 Rationality of Poincaré Series

Fix f1, . . . , fr 2 Qp[X1, . . . , Xn]. Let

Nk = |{y 2 Z/pkZ : 9x 2 Zn

p
f1(x) = · · · = fr(x) = 0 ^

^
xi = yi(mod pk)}.9

We will consider the Poincaré series

P (T ) =
1X

k=0

NkT
k.

We could also consider

eNk = |{y 2 Z/pk : fi(y) = 0(mod pk)}, i = 1, . . . , r}

and eP (T ) =
P

1

k=0
eNkT k.

Igusa [21], [22] (for r = 1) and Meuser [31] (for general r), proved that eP (T )
is a rational function of T . Denef answered a question of Serre and Oesterlé by
proving the rationality of P (T ).

Theorem 7.48 (Denef [8]) P (T ) is a rational function of T .

Igusa’s proof used resolution of singularities to simply certain p-adic inte-
grals. Denef’s gave two proofs, the first also using resolution of singularities but
the second used quantifier elimination to avoid resolution of singularities.

p-adic integration

The p-adics under addition are a locally compact group and thus come equipped
with a Haar measure µ.. Let B be the �-algebra generated by the compact
subsets of Qp. There is a unique �-additive measure µ : B ! R such that:

i) µ(Zp) = 1;
ii) (translation invariance) µ(a+A) = µ(A) for a 2 Qp, A 2 B;
iii) for every A 2 B and ✏ > 0 there is an open set U and a closed set F such

that F ✓ X ✓ U and µ(U \ F ) < ✏.

Exercise 7.49 µ({a}) = 0 for all a 2 Qp.

Let m be the maximal ideal. Then

m [ (1 +m) [ · · · [ ((p� 1) +m) = Zp.

Thus by additivity and translation invariance µ(m) = 1/p.

Exercise 7.50 Show that µ({x : v(x� a) � r}) = p�r.

Example 7.51 Let A be the set of squares in Zp where p 6= 2.

9
This is a little unclear if k = 0, in which case we mean that N0 = 1 if f1 = · · · = fm = 0

has a zero in Zn
p and otherwise N0 = 0.
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Let Ak = {x 2 A : v(x) = 2k}. Then A = {0} [
S

Ak and

µ(A) =
1X

k=0

µ(Ak).

If x 2 Ak if and only if x = p2ky where v(y) = 0 and res(y) is a square in Fp.
Since there are p�1

2 squares in Fp we can find z1, . . . , z p�1
2

2 Zp such that Ak is

the disjoint union B1 [ · · · [B p�1
2

where

Bi = {x� zi : vp(x) � 2k + 1}.

We have µ(Bi) = p�2k�1. Thus

µ(A) =
1X

k=0

p� 1

2
p�2k�1

=
p� 1

2p

1X

k=0

p�2k

=
p� 1

2p

✓
1

1� p�2

◆

=
p

2(1 + p)
.

Exercise 7.52 Calculate the Haar measure of the set of squares when p = 2.

There is a Haar measure µm on Zm
p
. This is just the usual product measure,

and we will usually write µ rather than µm.
Suppose A 2 B and f : A ! R is a B-measurable function, we can define

the integral Z

A

f dµ.

We give two illustrative examples.

Example 7.53 Suppose p 6= 2. Let A be the set of squares in Zp and let
f(x) = |xs

|p.
Let Ak = {x 2 Ak : v(x) = 2k}. Then

Z

A

|xs
|p dµ =

1X

k=0

Z

Ak

|xs
|p dµ

=
1X

k=0

Z

Ak

p�2sk dµ

=
1X

k=0

p�2skµ(Ak).
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We saw above that µ(Ak) =
p�1
2 p�2k�1. Thus

Z

A

|xs
|p dµ =

p� 1

2p

1X

k=0

(p�2s�2)k

=
p� 1

2p

✓
1

1� p�2s�2

◆

Exercise 7.54 Calculate
R
A
|xs

| dµ when p = 2.

Example 7.55 Suppose p = 3(mod 4). Let f(x) = |x+1|p and let A again by
the squares in Zp.

Since p = 3(mod 4), -1 is a square in Fp and hence in Zp. Let B = {x 2 Zp :
v(x + 1)}. Then every y 2 B is a square. If we partition A into B and A \ B,
then Z

A

|x+ 1|p dµ =

Z

B

|x+ 1|p dµ+

Z

A\B

|x+ 1|p dµ.

But on A \B, |x+ 1|p = 1. Hence
Z

A\B

|x+ 1|p dµ =

Z

A\B

1 dµ = µ(A)� µ(B) =
p

2(1 + p)
�

1

p
.

Partition B = {�1} [B1 [B2 [ . . . where Bi = {x : v(x+ 1) = i} Then
Z

B

|x+ 1|p dµ =
1X

k=1

Z

Bi

|x+ 1|p dµ

=
1X

k=1

Z

Bi

p�k dµ

=
1X

k=1

p�kµ(Bi)

=
1X

k=1

p�k

✓
1

pk
�

1

pk+1

◆

=
p� 1

p3

1X

k=0

p�2k

=
p� 1

p3(1� p�2)2

Thus Z

A

|1 + x|p dµ =
p� 1

p3(1� p�2)2
+

p

2(1 + p)
�

1

p
.

The next lemma is the link between integration and Poincaré series. Let
f1, . . . , fr 2 Zp[X], where X = (X1, . . . , Xn) and let P be the associated
Poincaré series. Let

D = {(x, y) 2 Zn+1
p

: 9z 2 Zn

p
f1(z) = · · · = fr(z) = 0 ^

^
v(xi � zi) � v(y)}
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and for s 2 R, s > 0, define

I(s) =

Z

D

|y|s dµ.

Lemma 7.56 I(s) = p�1
p

P (p�n�1p�s).

Proof Let Dk = {(x, y) 2 D : v(y) = k}. Then

I(s) =
1X

k=0

Z

Dk

|y|s dµ

=
1X

k=0

Z

Dk

p�sk dµ

=
1X

k=0

p�skµ(Dk)

For each z(mod pk) with f1(z) = · · · = fr(z) = 0.

µ({x : z = x(mod pk)} = p�nk

and

µ({y : v(y) = k} =
p� 1

pk+1
.

Thus

µ(Dk) = Nk

p� 1

p
p�nk�k,

as for each of the Nk zeros mod pk we can find a ball (in m-space) of measure
p�mk. Thus

I(s) =
p� 1

p

1X

k=0

Nk(p
�s�n�1)k =

p� 1

p
P (p�s�n�1).

⇤
We will prove that there is a rational function Q(T ) such that I(s) = Q(p�s).

Letting Y = p�s we have

Q(Y ) =
p� 1

p
P (p�n�1Y ).

Then letting T = p�n�1Y

P (T ) =
p

p� 1
Q(pn+1T ).

Hence P (T ) is a rational function.

Denef proved the following general rationality theorem.
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Theorem 7.57 (Denef) Suppose A ✓ Qm
p

is definable and contained in a

compact set and h : A ! Qp is a definable function. Suppose natural number

M and v(h(x)) is either divisible by M or +1 for all x 2 A. Then

ZA(s) =

Z

A

|h(x)|s/M
p

dµ

is a rational function in p�s
for s 2 (0,+1).

7.3.1 Denef’s Cell Decomposition

The proof of Theorem 7.57 needs an analysis of definable functions from Qm
p

to
the value group and a refined cell decomposition/preparation theorem.

Definition 7.58 Suppose A ✓ Qm
p

is definable. We say that a defiinable
✓ : A ! Z [ {+1} is simple if there is a finite partition of A into definable
sets such that for each set B in the partition, there is an integer M and f, g 2

Qp[X1, . . . , Xm] such that ✓(x) = 1
M
(v(f(x))� v(g(x))) on B.

Lemma 7.59 Suppose A ✓ Qm+1
p

is definable, B = {x 2 Qm
p

: 9y (x, y) 2 A
and for all x 2 B v is constant on Ax = {y : (x, y) 2 A}. Let ✓ : B ! Z[{+1}

by the function where ✓(x) = v(y) for all (x, y) 2 A. Then ✓ is simple.

Proof Without loss of generality, assume that if (x, y) 2 A, then y 6= 0. If
not Z = {(x, y) 2 A : y = 0}, then ✓|Z is constant and replace A by A \ Z.
Since p-adically closed fields, have definable Skolem functions there is a definable
f : B ! Qp such that (x, f(x)) 2 A for all x 2 B. By Exercise 7.22, there is a
polynomial F (X, Y ) such that F (x, f(x)) = 0 for all x 2 A and F (x, Y ) is not
identically zero. Let

F (X, Y ) =
dX

i=0

gi(X)Y i.

Since F (x, f(x)) = 0 for each x 2 A, there is an i < j such that v(gi(x))+iv(y) =
vj(gj(X)) + jv(y). For i < j  d, let

Ai,j = {(x, y) 2 A : (i, j) is minimal such that v(y) =
v(gi(x))� v(gj)(x)

j � i
}.

Then (Ai,j : i < j  d) is a partition of A showing that ✓ is simple. ⇤
Denef proved the following cell decomposition/preparation theorem. We

refer the reader to [8] §7 for the proof.

Theorem 7.60 Suppose f1, . . . , fr 2 Qp[X, Y ], where X = (X1, . . . , Xm) and

N > 1, then Qm+1
p

can be partitioned into finitely many definable sets of the

form

A = {(x, y) 2 Qm+1
p

: x 2 C, v(a1(x))⇤1 v(y � c(x))⇤2 v(a2(x))}
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where C ✓ Qm
p

is definable, a1, a2 and c are definable functions, ⇤i is either

<,  or no restriction, and there is are definable function hj : C ! Qp for

j = 1, . . . , r such that

fj(x, y) = uj(x, t)
Nhi(x)(y � c(x))vj

function where uj(x, y) is a unit.

In the following proofs we will be interested in knowing of the value of
fj(x, y) or if fj(x, y) is an N th-power. Since uj(x, y)N is always a unit and an
N th-power, we have reduced the question to understanding hj(x)(y � cx)vj .

The following lemma is the key step in Denef’s proof.

Lemma 7.61 Suppose A ✓ Qm
p

is definable and contained in a compact set

and h : A ! Qp is a definable function such that for some natural number M
v(h(x)) is either divisible by M or +1 for all x 2 A. Then

ZA(s) =

Z

A

|h(x)|s/M
p

dµ

is a linear combination of series of the form

X

(k1,...,km)2L

ki=�i(mod Ni)

p�(q1k1+···+qmkm)s�k1�···�km

where k1, . . . , km,�i 2 Z, Ni 2 N, q1, . . . , qm 2 Q and L is defined by a system

of linear inequalities with rational coe�cients.

Any function of this form is rational in p�s

Proof (Sketch) The result is trivial if m = 0. We write points in Qm+1
p

as
(x, y).

Since
R
A[B

=
R
A
+
R
B
�
R
A\B

, we can always take Boolean combinations.
We first apply Lemma 7.59 to partition A. Without loss of generality, we

may assume

|h(x, y)|1/M
p

=

����
g1(x, y)

g2(x, y)

����

1
M0

p

where g1, g2 2 Qp[X, Y ] and M 0 > 0. Further, by quantifier elimination and
Exercise 7.17 we may assume that A is defined by a conjunction

^

j=1,...,r

±Pnj (fj(x, y)).

We apply Theorem 7.60 to the functions f1, . . . , fr, g1 and g2 where N =Q
nj . So, by further partitioning, we may assume A is defined by

x 2 C ^ v(a1(x))⇤1 v(y � c(x))⇤2 v(a2(x))

88



and on A
|h(x, y)|1/M

p
= |h0(x)|

1/M 0

p
|p|y � c(x)|v/M

0

p

and fj(x, y) is an nth
j
-power if and only if hj(x)(y � c(x))vj is.

We can further refine our partition so that the coset of N th-powers of each
hj(x) and (y�c(x) is fixed on each set in the partition. Without loss of generality
they are constant on A. Let z = y � c(x). Suppose z 2 �(mod P⇥

N
). Then

Z

A

|h|s/M
p

dy dx =

Z

A

|h(x, y)|s/M
0

p
dy dx

=

Z

C

0

BBBB@
|h0(x)|

s/M
0

p

Z

v(a1(x))⇤1v(z)⇤2v(a2(x))

z=� (mod P
⇥
N )

|z|sv/M
0

p

1

CCCCA
dz dx

=

Z

C

0

BBBB@
|h0(x)|

s/M
0

p

X

v(a1(x))⇤1k⇤2v(a2(x))

p�kvs/M
0

Z

v(z)=k

z=� (mod P
⇥
N )

1 dz

1

CCCCA
dx

Let w = p�kz. Then
Z

v(z)=k

z=�(mod P
⇥
N )

1 dz = p�k

Z

v(w)=0

w=p
�k

� (mod P
⇥
N )

1 dw.

The righthand side is 0 if k 6= v(�)(mod N)) and otherwise is p�k� where �
does not depend on k. Thus

ZA(s) = �

Z

C

0

BB@|h0(x)|
s/M

0

p

X

va1(x))⇤1k⇤2v(a2(x))
k=v(�)(mod N)

p�(kvs)/M 0
�k

1

CCA dx

= �
X

k=v(�)(mod N)

0

BBB@
p�(kvs)/M 0

�k

Z

x2C

v(a1(x))⇤1k⇤2v(a2(x))

|h0(x)|
s/M

0

p
dx

1

CCCA
.

We have succeeded in getting rid of the y variable. We next try to elimi-
nate the variable xm We apply cell decomposition with the functions a1(x) and
a2(x). After some change of variables and further partitioning we are looking at
something like {(v(x), k) : a1(x)⇤1k⇤2a2(x)}. This set is defined by a Boolean
combination of congruence conditions and linear inequalities. Proceeding with
care we get the desired result. ⇤
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The end of the proof contains quite a bit of “hand waving” that is tricky to
carefully formulate as an inductive argument. We give one more hopefully illus-
trative example where this works out. We’ve chosen things so that we already
done cell decompositon and don’t need to partition further to get functions in
the right form, but most of the other tricks in Denef’s proof arise here. Also the
argument given at the end to go from the power series to the rational function
uses most of the ideas found in a proof of the general result.

Example 7.62
Suppose p ⌘ 1(mod 3) and let

A = {(x, y) 2 Z2
p
: x is a cube, y is a square and 0  v(y)  v(x3)}

and let h(x, y) = xy. We will calculate

ZA(s) =

Z

A

|h(x, y)|p dµ.

Let D = {x 2 Zp : x is a cube} . Then

ZA(s) =

Z

x2D

|x|s
Z

y a square
v(y)v(x3)

|y|s dy dx

=

Z

x2D

0

BB@|x|s
X

k�0
kv(x3)

p�ks

Z

v(y)=k
y a square

1 dy

1

CCA dx.

We can calculate

µ({y : v(y) = k, y a square}) =

(
0 k odd⇣

p�1
2p

⌘
p�k k even

.

There are p�1
2 squares in F⇥

p
. Thus the set of squares of value k is the union

of p�1
2 balls of radius p�k�1 and hence has measure p�1

2p p�k. Thus

ZA(s) =
p� 1

2p

X

k even

0

BBB@
p�ks�k

Z

x2D

kv(x3)

|x|s dx

1

CCCA

But
Z

x2D

kv(x3)

|x|s dx =
X

0l

k3l

Z

v(x)=l

l a cube

1 dx

=
p� 1

3p

X

0l,3|l
k3l

p�ls�l

90



since there are (p�1)
3 cubes in F⇥

p
. Thus

ZA(s) =
(p� 1)2

6p2

X

2|k,3|l
0k3l

p�ls�ks�l�k.

It su�ces to show that
X

2|k,3|l
0k3l

p�ls�ks�l�k

is a rational function in p�s. We start by making the substitutions k = 2i,
l = 3j. X

2|k,3|l
0k3l

p�ls�ks�l�k =
X

02i9j

p�(3s+3)j�(2s+2)i

Every value of j is either of the form 2r or 2r + 1. In the first case 2k  9j if
and only if k  9r. In the second case

2k  9j , 2k  18r + 9 , k  9r + 4.

Thus we can break the sum above up into
X

0i9r

p�(6s+6)r�(2s+2)i +
X

0i9r+4

p�6sr�3s�6r�3�(2s+2)i

We will show the first summand is a rational function in p�s and leave the
second summand as an exercise.

X

0i9r

p�(6s+6)r�(2s+2)i =
1X

r=0

 
p�(6s+6)r

9rX

s=0

p�(2s+2)i

!
.

Knowing how to sum geometric series we see that

9rX

s=0

p�(2s+2)i =
1� (p�(2s+2))9r+1

1� p�(2s+2)

So

X

0i9r

p�(6s+6)r�(2s+2)i =
1

1� p2s+2

 
1X

r=0

p�(6s+6)r +
1X

r=0

p�(6s�6)rp�(2s+2)(9r+1)

!

=
1

1� p2s+2

 
1X

r=0

p�(6s+6)r +
1X

r=0

p�24sr�2s�24r�2

!

These are both geometric series and give rise to a rational function in p�s.
The tricks used in this calculation work in general to show that any series

of the type arising in the proof of Lemma 7.61 is a rational function in p�s.
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