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These are informal notes for a course in Descriptive Set Theory given at
the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly
broad survey of the subject we will be concentrating on problems about group
actions, particularly those motivated by Vaught’s conjecture. Kechris’ Classical
Descriptive Set Theory is the main reference for these notes.

Notation: If A is a set, A<ω is the set of all finite sequences from A. Suppose
σ = (a0, . . . , am) ∈ A<ω and b ∈ A. Then σ b̂ is the sequence (a0, . . . , am, b).
We let ∅ denote the empty sequence. If σ ∈ A<ω, then |σ| is the length of σ. If
f : N→ A, then f |n is the sequence (f(0), . . . , f(n− 1)).

If X is any set, P(X), the power set of X is the set of all subsets X .
If X is a metric space, x ∈ X and ε > 0, then Bε(x) = {y ∈ X : d(x, y) < ε}

is the open ball of radius ε around x.

Part I

Classical Descriptive Set Theory

1 Polish Spaces

Definition 1.1 Let X be a topological space. We say that X is metrizable if
there is a metric d such that the topology is induced by the metric. We say that
X is separable if there is a countable dense subset.

A Polish space is a separable topological space that is metrizable by a com-
plete metric.

There are many classical examples of Polish spaces. Simple examples include
Rn, Cn, I = [0, 1], the unit circle T, and Qn

p , where Qp is the p-adic field.

Example 1.2 Countable discrete sets are Polish Spaces.

Let X be a countable set with the discrete topology. The metric

d(x, y) =

{
0 if x = y
1 if x 6= y

is a complete metric inducing the topology.

If d is a metric on X , then

d̂(x, y) =
d(x, y)

1 + d(x, y)

is also a metric, d̂ and d induce the same topology and d̂(x, y) < 1 for all x.

Example 1.3 If X0, X1, . . . are Polish spaces, then
∏
Xn is a Polish space.
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Suppose dn is a complete metric on Xn, with dn < 1, for n = 0, 1, . . .. Define
d̂ on

∏
Xn by

d̂(f, g) =

∞∑

n=0

1

2n+1
dn(f(n), g(n)).

If f0, f1, . . . is a Cauchy-sequence, then f1(i), f2(i), . . . is a Cauchy-sequence
in Xi for each i. Let g(n) = lim

i→∞
fi(n). Then g is the limit of f0, f1, . . ..

Suppose xi0, x
i
1, . . . is a dense subset of Xi. For σ ∈ N<ω let

fσ(n) =

{
xn
σ(n) if i < |σ|
xn0 otherwise

.

The {fσ : σ ∈ N<ω} is dense in
∏
X .

In particular, the Hilbert cube H = IN is Polish. Indeed, it is a universal
Polish space.

Theorem 1.4 Every Polish space is homeomorphic to a subspace of H.

Proof Let X be a Polish space. Let d be a compatible metric on X with d < 1
and let x0, x1, . . . a dense set. Let f : X → H by f(x) = (d(x, x1), d(x, x2), . . .).
If d(x, y) < ε/2, then |d(x, xi)− d(y, xi)| < ε and d(f(x), f(y)) <

∑ 1
2n+1 ε < ε.

Thus f is continuous. If d(x, y) = ε choose xi such that d(x, xi) < ε/2. Then
d(y, xi) > ε/2, so f(x) 6= f(y).

We need to show that f−1 is continuous. Let ε > 0. Choose n such that
d(x, xn) < ε/3. If |y − xn| > 2ε/3, then d(f(x), f(y)) ≥ 1

3(2n+1) . Thus if

d(f(x), f(y)) < 1
3(2n+1) , then d(x, y) < ε. Hence f−1 is continuous.

Function spaces provide other classical examples of Polish spaces. Let C(I)
be the continuous real-valued functions on I, with d(f, g) = sup{|f(x)− g(x)| :
x ∈ I}. Because any Cauchy sequence converges uniformly, d is complete. Any
function in I can be approximated by a piecewise linear function defined over
Q. Thus C(I) is separable.

More generally, if X is a compact metric space and Y is a Polish space
let C(X,Y ) be the space of continuous functions from X to Y with metric
d(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

Other classical examples include the spaces lp, l∞ and Lp from functional
analysis.

The next two lemmas will be useful in many results. If X is a metric space
and Y ⊆ X , the diameter of Y is diam (Y ) = sup{d(x, y) : x, y ∈ Y }

Lemma 1.5 Suppose X is a Polish space and X0 ⊇ X1 ⊇ X2 ⊇ . . . are closed
subsets of X such that limn→∞ diam (Xn) = 0. Then there is x ∈ X such that⋂
Xn = {x}.

Proof Choose xn ∈ Xn. Since diam (Xn)→ 0, (xn) is a Cauchy sequence. Let
x be the limit of (xn). Since each Xn is closed x ∈

⋂
Xn. Since diam (Xn)→ 0,

if y ∈
⋂
Xn, then x = y.
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Lemma 1.6 If X is a Polish space, U ⊆ X is open and ε > 0, then there are
open sets U0, U1, U2, . . . such that U =

⋃
Un =

⋃
Un and diam (Un) < ε for all

n.

Proof Let D be a countable dense set. Let U0, U1, . . . list all sets B 1
n
(d) such

that d ∈ D, 1
n
< ε/2 and B 1

n
(d) ⊆ U . Let x ∈ U . There is n > 0 such

that 1
n
< ε, B 1

n
(x) ⊂ U . There is d ∈ D ∩ B 1

3n
(x). Then x ∈ B 1

3n
(d) and

B 1
3n
(d) ⊂ U . Thus B 1

3n
(d) is one of the Ui and x ∈

⋃
Ui.

Baire Space and Cantor Space

If A is any countable set with the discrete topology and X is any countable set,
then AX is a Polish space. Two very important examples arise this way.

Definition 1.7 Baire space is the Polish space N = NN and Cantor space is
the Polish space C = 2N.

An equivalent complete metric on N is d(f, g) = 1
2n+1 where n is least such

that f(n) 6= g(n).
Since the two point topological space {0, 1} with the discrete topology is

compact. By Tychonoff’s Theorem C is compact.

Exercise 1.8 Show that C is homeomorphic to Cantor’s “middle third” set.

Another subspace of N will play a key role later.

Example 1.9 Let S∞ be the group of all permutations of N, viewed as a sub-
space of N .

If d is the metric on N , then d is not complete on S∞. For example let

fn(i) =

{
i+ 1 if i < n
0 if i = n
i otherwise

.

Then fn is a Cauchy sequence in N , but the limit is the function n 7→ n+1 that
is not surjective. Let d̂(x, y) = d(x, y) + d(x−1, y−1). It is easy to see that if

(fn) is a d̂-Cauchy sequence in S∞, then (fn) and (f−1
n ) are d-Cauchy sequences

that converge in N . One can then check that the elements the converge to must
be inverses of each other and hence both in S∞.

Exercise 1.10 A metric d on a group G is called left-invariant if d(xy, xz) =
d(y, z) for all x, y, z ∈ G. Show that the original metric d on S∞ is left-invariant,
but that there is no left-invariant complete metric on S∞.

Exercise 1.11 Define φ : N → C by

φ(f) = 00 . . . 0︸ ︷︷ ︸
f(0)

11 . . . 1︸ ︷︷ ︸
f(1)+1

00 . . .0︸ ︷︷ ︸
f(2)+1

1 . . . .
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Show that φ is a continuous and one-to-one. What is the image of φ?

Exercise 1.12 We say that x ∈ [0, 1] is a dyadic-rational is x = m
2n for some

m,n ∈ N. Otherwise, we say x is a dyadic-irrational. Show that N is homeo-
morphic to the dyadic-irrationals (with the subspace topology). [Hint: let φ be
as in Exercise 1.11 and map f to the dyadic-irrational with binary expansion
φ(f).]

Exercise 1.13 † Show that

f 7→
1

1 + f(0) + 1
1+f(1)+ 1

1+f(2)+ 1
1+...

is a homeomorphism between N and the irrational real numbers in (0, 1).

Because N will play a key role in our study of Polish spaces, we will look
more carefully at its topology. First we notice that the topology has a very
combinatorial/computational flavor.

If σ ∈ N<ω, Let Nσ = {f ∈ N : σ ⊂ f}. Then Nσ is an open neighborhood
of f . It is easy to see that {Nσ : σ ∈ N<ω} is a basis for the topology. Notice
that N \Nσ =

⋃
{Nτ : τ(i) 6= σ(i) for some i ∈ dom σ} is also open. Thus Nσ

is clopen. It follows that the Baire Space is totally disconnected (i.e., any open
set is the union of two disjoint open sets).

If U ⊆ N is open, there is S ⊆ N<ω such that U =
⋃

σ∈S

Nσ. Let T = {σ ∈

N<ω : ∀τ ⊆ σ τ 6∈ S}. Note that if σ ∈ T and τ ⊆ σ, then τ ∈ T . We call a set
of sequences with this property a tree. We say that f ∈ N is a path through T
if (f(0), . . . , f(n)) ∈ T for n = 0, 1, . . .. We let

[T ] = {f ∈ N : f is a path through T}.

Then f ∈ [T ] if and only if σ 6⊂ f for all σ ∈ S if and only if f 6∈ U . We have
proved the following characterizations of open and closed subsets of N .

Lemma 1.14 i) U ⊆ N is open if and only if there is S ⊆ N<ω such that

U =
⋃

σ∈S

Nσ.

ii) F ⊆ N is closed if and only if there is a tree T ⊆ N<ω such that F = [T ].

We can improve the characterization a little.

Definition 1.15 We say that a tree T ⊆ N<ω is pruned if for all σ ∈ T , there
is i ∈ N with σ î ∈ T .

Equivalently, T is pruned if for all σ ∈ T , there is f ∈ [T ] with σ ⊂ f . If
T is a tree, then T ′ = {σ ∈ T : ∃f ∈ [T ] σ ⊂ f}. It is easy to see that T ′ is a
pruned tree with T ⊆ T ′. Thus every closed set F is the set of paths through a
pruned tree.

If f : N → N , then f is continuous if and only if for all x and σ ⊂ f(x),
there is a τ ⊂ x such that if τ ⊂ y, then σ ⊂ f(y). In other words, for all n
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there is an m, such that the first n values of f(x) are determined by the first m
values of x. In §4 we will show how this brings in ideas from recursion theory.

Another key feature of the Baire space is that powers of the Baire space are
homeomorphic to the Baire space. Thus there is no natural notion of dimension.

Lemma 1.16 i) If k > 0, then N is homeomorphic to Nd ×N k.
ii) N is homeomorphic to N N.

Proof If α = (n1, . . . , nd, f1, . . . , fk) ∈ Nd ×N k , let

φ(f) = (n1, . . . , nd, f1(0), f2(0), . . . , fk(0), f1(1), . . . , fk(1), . . . , f1(n), . . . , fk(n), . . .).

If β = (f0, f1, . . .) ∈ NN , let

ψ(β) = (f0(0), f0(1), f1(0), . . .).

It is easy to see that φ and ψ are homeomorphisms.
A third important feature of the Baire space is that every Polish space is a

continuous image of the Baire space. We first prove that every closed subset of
N is a continuous image of N .

Theorem 1.17 If X is a Polish space, then there is a continuous surjective
φ : N → X.

Proof Using Lemma 1.6 build a tree of sets (Uσ : σ ∈ N<ω) such that:
i) U∅ = X ;
ii) Uσ is an open subset of X ;
iii) diam (Uσ) <

1
|σ| ;

iv) Uτ ⊆ Uσ for σ ⊂ τ ;

v) Uσ =

∞⋃

i=0

Uσ
�

i.

If f ∈ N , then by 1.5 there is φ(f) such that

φ(f) =

∞⋂

n=0

Uf |n =

∞⋂

n=0

Uf |n = {φ(f)}.

Suppose x ∈ X . We build σ0 ⊂ σ1 ⊂ . . . with x ∈ Uσi . Let σ0 = ∅. Given σn
with x ∈ Uσn , there is a j such that x ∈ Uσn

�

j . Let σn+1 = σn ĵ. If f =
⋃
σn,

then φ(f) = x. Thus φ is surjective.
Suppose φ(f) = x. If g|n = f |n, then φ(g) ∈ Uf |n and d(φ(f), φ(g)) < 1

n
.

Thus φ is continuous.

Indeed we have shown that there is an open, continuous, surjective φ : N →
X .

We will prove a refinement of this theorem. We need one lemma.
Recall that X is an Fσ-set if it a countable union of closed sets. If O ⊂ X

is open, then, by 1.6 there are open sets U0, U1, . . . such that O =
⋃
Un. Thus

every open set is and Fσ-set. The union of countably many Fσ-sets is an Fσ-set.
If X =

⋃
Ai and Y =

⋃
Bi are Fσ-sets, then X ∩ Y =

⋃
(Ai ∩ Bj) is also an

Fσ-sets.
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Lemma 1.18 Suppose X is a Polish space and Y ⊆ X is an Fσ-set and ε > 0.
There are disjoint Fσ-sets Y0, Y1, . . . with diam (Yi) < ε, Y i ⊆ Y and

⋃
Yi = Y .

Proof Let Y =
⋃
Cn where Cn is closed. Replacing Cn by C0 ∪ . . . ∪ Cn

we may assume that C0 ⊆ C1 ⊆ . . .. Thus Y is the disjoint union of the sets
C0, C1 \C0, C2 \C1, . . .. Since Ci \ Ci+1 ⊆ Ci ⊆ Y , it suffices to show that each
Ci\Ci−1 is a disjoint union of Fσ-sets of diameter less than ε. Suppose Y = F∩O
where F is closed and O is open. By Lemma 1.6, we can find O0, O1, . . . open sets
with diam (On) < ε and O =

⋃
On =

⋃
On. Let Yn = F ∩(On\(O0∩. . . On−1)).

The Yi are disjoint, Yi ⊆ Oi ⊂ O, so Yi ⊆ Y , and
⋃
Y i = Y .

Theorem 1.19 If X is Polish, there is F ⊆ N closed and a continuous bijection
φ : F → X.

Proof Using the previous lemma, we build a tree (Xσ : σ ∈ N<ω) of Fσ-sets
such that

i) X∅ = X ;
ii) Xσ =

⋃∞
i=0Xσ

�

i;
iii) Xτ ⊆ Xσ if τ ⊂ σ;
iv) diam (Xσ) <

1
|σ| ;

v) if i 6= j, then Xσ
�

i ∩Xσ
�

j = ∅.
If f ∈ N , then

⋂
Xf |n contains at most one point. Let

F =
{
f ∈ N : ∃x ∈ X x ∈

∞⋂

n=0

Xf |n

}
.

Let φ : F → X such that φ(f) =
⋂
Xf |n. As above φ is continuous. By v) φ

is one-to-one. For any x ∈ X we can build a sequence σ0 ⊂ σ1 ⊂ . . . such that
x ∈

⋂
Xσn . We need only show that F is closed.

Suppose (fn) is a Cauchy sequence in F . Suppose fn → f ∈ N . We must
show f ∈ F . For any n there is an m such that fi|n = fm|n for i > m. But then
d(φ(fi), φ(fm)) < 1

n
. Thus φ(fn) is a Cauchy sequence. Suppose φ(fn) → x.

Then x ∈
⋂
Xf |n =

⋂
Xfn , so φ(f) = x and f ∈ F .

Exercise 1.20 Prove that if X and Y are closed subsets of N with X ⊆ Y
then there is a continuous f : Y → X such that f |X is the identity (we say that
X is a retraction of Y). Use this to deduce 1.17 from 1.19.

Cantor–Bendixson analysis

We next show that the Continuum Hypothesis is true for Polish spaces, and
closed subsets of Polish spaces.

Definition 1.21 Let X be a Polish space. We say that P ⊆ X is perfect if X
is a closed set with no isolated points.

Note that ∅ is perfect. Nonempty perfect sets have size 2ℵ0 .
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Lemma 1.22 If P ⊆ X is a nonempty perfect set, then there is a continuous
injection f : C → P . Indeed, there is a perfect F ⊆ P , homeomorphic to C. In
particular |P | = 2ℵ0 .

Proof We build a tree (Uσ : σ ∈ 2<ω) of nonempty open subsets of X such
that:

i) U∅ = X ;
ii) Uτ ⊂ Uσ for σ ⊂ τ ;
iii) Uσ

�

0 ∩ Uσ
�

1 = ∅;
iv) diam (Uσ) <

1
|σ| ;

v) Uσ ∩ P 6= ∅;
Suppose we are given Uσ with Uσ ∩P 6= ∅. Because P is perfect, we can find

x0 and x1 ∈ Uσ ∩ P with x0 6= x1. We can choose Uσ
�

0 and Uσ
�

1 disjoint open
neighborhoods of x0 and x1, respectively such that Uσ

�

i ⊂ Uσ and diam (Uσ
�

i) <
1

|σ+1| . This allows us to build the desired tree.

By Lemma 1.5, we can define f : C → P such that

{f(x)} =
∞⋂

n=0

Ux|n =

∞⋂

n=0

Ux|n =

∞⋂

n=0

Ux|n ∩ P.

It is easy to check that f is continuous and one-to-one.
Since f is continuous and C is compact, F = f(C) is closed. By construction

F is perfect. The map f : C → F is open and hence a homeomorphism.

Exercise 1.23 Suppose f : C → X is continuous and one-to-one. Prove that
f(C) is perfect.

Consider Q as a subspace of R. As a topological space Q is closed and has
no isolated points. Since |Q| = ℵ0, Q is not a Polish space.

We next analyze arbitrary closed subsets of Polish spaces. Let X be a Polish
space. Let U0, U1, . . . be a countable basis for the open sets of X . If F ⊆ X is
closed, let F0 be the isolated points of F . For each x ∈ F0 we can find ix such
that Uix ∩ F = {x}. Thus F0 is countable and

F \ F0 = F \
⋃

x∈F0

Uix

is closed.

Definition 1.24 If F ⊆ X is closed, the Cantor–Bendixson derivative is

Γ(F ) = {x ∈ F : x is not an isolated point of F}.

For each countable ordinal α < ω1, we define Γα(F ) as follows:
i) Γ0(F ) = F ;
ii) Γα+1(F ) = Γ(Γα(F ));

iii) Γα(F ) =
⋂

β<α

Γβ(F ).
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Lemma 1.25 Suppose X is a Polish space and F ⊆ X is closed.
i) Γα(F ) is closed for all α < ω1;
ii) |Γα+1(F ) \ Γα(F )| ≤ ℵ0;
iii) if Γ(F ) = F , then F is perfect, and Γα(F ) = F for all α < ω1.
iv) there is an ordinal α < ω1 such that Γ

α(F ) = Γα+1(F )

Proof i)–iii) are clear. For iv), let U0, U1, . . . be a countable basis for X . If
Γα+1 \ Γα 6= ∅, we can find nα ∈ N such that Unα isolates a point of Γα(F ).
By construction Unα does not isolate a point of Γβ(F ) for any β < α. Thus
nα 6= nβ for any β < α.

If there is no ordinal α with Γα(F ) = Γα+1(F ), then α 7→ nα is a one-to-one
function from ω1 into N, a contradiction.

The Cantor–Bendixson rank of F , is the least ordinal α such that Γα(F ) =
Γα+1(F ).

Exercise 1.26 † Show that for all α < ω1, there is a closed F ⊆ R with
Cantor–Bendixson rank α.

Theorem 1.27 If X is a Polish space and F ⊆ X is closed, then F = P ∪ A
where P is perfect (possibly empty), A is countable and P ∩ A = ∅.

Proof If F ⊆ X is a closed set of Cantor–Bendixson rank α < ω1, then
F = P ∩ A where P = Γα(F ) and A =

⋃
β<α Γ

β+1(F ) \ Γβ(F ). Clearly A is
countable and A ∩ P = ∅.

Corollary 1.28 If X is a Polish space. and F ⊆ X is an uncountable closed
set then F contains a nonempty perfect set and |F | = 2ℵ0 . Also, if Y ⊆ X is
an uncountable Fσ-set, then Y contains a perfect set.

In particular every uncountable Polish space has cardinality 2ℵ0 .

Exercise 1.29 Show that there is an uncountable A ⊂ R such that no subset
of A is perfect. [Hint: Build A be diagonalizing against all perfect sets. You
will need to use a well-ordering of R.]

Polish subspaces

Suppose X is a Polish space and F ⊆ X is closed. If (xn) is a Cauchy sequence
with each xn ∈ F , then limxn ∈ F . Thus F is also a Polish space.

If U ⊂ X is open, then Cauchy sequences in U , may not converge to elements
of U . For example, (0, 1) ⊂ R and 1

n
→ 0 6∈ (0, 1). The next lemma shows that

when U is open we are able to define a new complete metric on U compatible
with the topology.

Lemma 1.30 If X is a Polish space and U ⊆ X is open, then U (with the
subspace topology) is Polish.
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Proof Let d be a complete metric on X compatible with the topology, we may
assume d < 1.

Let

d̂(x, y) = d(x, y) +

∣∣∣∣
1

d(x,X \U)
−

1

d(y,X \ U)

∣∣∣∣ .

It is easy to see that d̂(x, x) is a metric. Since d̂(x, y) ≥ d(x, y), every d-open,

set is d̂-open. Suppose x ∈ U , d(x,X \U) = r > 0 and ε > 0. Choose δ > 0 such
that if 0 < η ≤ δ, then η + η

r(r−η) < ε. If d(x, y) < δ, then d(y,X \ U) > r − δ.

Hence

d̂(x, y) ≤ δ +

∣∣∣∣
1

r
−

1

r + δ

∣∣∣∣ ≤ δ +
∣∣∣∣
−δ

r(r − δ)

∣∣∣∣ < ε.

Thus the d̂-ball of radius ε around x, contains the d-ball of radius δ. Hence
every d̂-open subset is open. Thus d̂ is compatible with the subspace topology
on U . We need only show d̂ is complete.

Suppose (xn) is a d̂-Cauchy sequence. Then (xn) is also a d-Cauchy sequence,
so there is x ∈ X such that xn → x. In addition for each n

lim
i,j→∞

∣∣∣∣
1

d(xi, X \ U)
−

1

d(xj , X \ U)

∣∣∣∣ = 0.

Thus there is r ∈ R such that

lim
i→∞

1

d(xi, X \ U)
= r.

In particular, 1
d(xi,X\U) is bounded away from 0 and d(x,X \ U) > 0. Thus

x ∈ U . Hence d̂ is a complete metric on U and U is a Polish space.
We can generalize this a bit further. Recall that Y ⊆ X is a Gδ-set if Y is

a countable intersection of open sets. The Gδ-sets are exactly the complements
of Fσ-sets. Thus every open set is Gδ and every closed set is Gδ.

Corollary 1.31 If X is a Polish space and Y ⊆ X is Gδ, then Y is a Polish
space.

Proof Let Y =
⋂
On where each On is open. Let dn be a complete metric on

On compatible with the topology. We may assume that dn < 1. Let

d̂(x, y) =

∞∑

n=0

1

2n+1
dn(x, y).

If (xi) is a d̂-Cauchy sequence, then (xi) is dn-Cauchy for each n. Thus there
is x ∈ X such that each xi → x in each On. Since each On is complete
x ∈

⋂
On = Y . Hence d̂ is complete.

Corollary 1.32 If X is a Polish space and Y ⊆ X is an uncountable Gδ-set,
then Y contains a perfect set.
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Can we generalize Corollary 1.31 further? We already saw that Q ⊆ R is not
a Polish subspace. Since Q is countable it is Fσ . Thus we can not generalize
this to Fσ-sets. Indeed the converse to the corollary is true.

Theorem 1.33 If X is a Polish space, then Y ⊆ X is a Polish subspace if and
only if Y is a Gδ-set.

Proof Suppose Y is a Polish subspace of X . Let d be a complete metric on
Y compatible with the subspace topology. Let U0, U1, . . . be a basis of open
subsets of X . If x ∈ Y and ε > 0, then for any open neighborhood V of X
there is Un ⊂ V such that x ∈ Un and diam (Y ∩ Un) < ε, where the diameter
is computed with respect to d.

Let
A = {x ∈ Y : ∀ε > 0∃n x ∈ Un ∧ diam (Y ∩ Un) < ε}.

Then

A =

∞⋂

m=1

⋃
{Un : diam (Y ∩ Un) <

1

m
}

is a Gδ-set and Y ⊆ A. Suppose x ∈ A. For all m > 0, there is Unm such that
x ∈ Unm and diam (Y ∩ Unm) < ε. Since Y is dense in A, for each m we can
find ym ∈ Y ∩Un1 ∩ . . .∩Unm . Then y1, y2, . . . is a Cauchy sequence converging
to x. Hence x ∈ Y . Thus Y = A is a Gδ-set.

Corollary 1.34 Every Polish space is homeomorphic to a Gδ-subset of H.

Proof By 1.4, if X is Polish space, then X is homeomorphic to a subspace Y
of H. By 1.33 Y is a Gδ-subset of X .

Spaces of L-structures

We conclude this section with another important example of a Polish space.
Let L be a countable first-order language. Let Mod(L) be the set of all

L-structures with universe N. We will define two topologies on Mod(L). Let
{c0, c1, . . .} be a set of countably many distinct new constant symbols and let
L∗ = L ∪ {c0, c1, . . .}. If M ∈ Mod(L), then we can naturally view M as an
L∗-structure by interpreting the constant symbol ci as i.

If φ is an L∗-sentence, let Bφ = {M ∈ Mod(φ) : M |= φ}. Let τ0 be the
topology with basic open sets {Bφ : φ a quantifier-free L∗-formula} and let τ1 be
the topology with basic open sets {Bφ : φ an L∗-formula}. Clearly the topology
τ1-refines τ0.

Theorem 1.35 (Mod(L), τ0) and (Mod(L), τ1) are Polish spaces.

We give one illustrative example to show that (Mod(L), τ0) is a Polish space.
Suppose L = {R, f, c} where R is a binary relation symbol, f is a binary function

symbol and c is a constant symbol. Let X be the Polish space 2N2

× NN2

× N,
with the product topology. If M is an L-structure, let RM, fM and cM be
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the interpretation of the symbols of L in M and let χRM : N2 → 2 be the
characteristic function of RM. The functionM 7→ (χRM , fM, cM) is a bijection
between Mod(L) and X .

We will prove (Mod(L), τ0) is Polish by showing that this map is a homeo-
morphism. Let Y0 = {(g, h, n) ∈ X : g(i, j) = 1}, Y1 = {(g, h, n) : h(i, j) = k},
Y3 = {(g, h, n) ∈ X : n = m}. The inverse images of these sets are the ba-
sic clopen sets BR(ci,cj), Bf(ci,cj)=ck and Bcm=c, respectively. It follows that
this map is continuous. We need to show that if φ is quantifier-free, then the
image of Bφ is clopen. This is an easy induction once we show it for atomic
formulas. For formulas of the form R(ci, cj) or f(ci, cj) = ck, this is obvious.
A little more care is needed to deal with formulas built up from terms. For
example, let φ be the formula f(c0, f(c1, c2)) = c3. Then the image of Bφ is
Y = {(g, h, n) : h(0, h(1, 2)) = 3}. Then

Y =
⋃

i∈N
{(g, h, n) : h(1, 2) = i ∧ h(0, i) = 3}

is open and

¬Y =
⋃

i∈N

⋃

j 6=3

{(g, h, n) : h(1, 2) = i ∧ h(0, i) = j}

is open. Thus Y is clopen. This idea can be generalized to all atomic φ.

Exercise 1.36 Give a detailed proof that (Mod(L), τ0) is a Polish space for
any countable first order language L.

Next, we consider (Mod(L), τ1). Let S be all L∗-sentences. Then 2S with
the product topology is a Polish space homeomorphic to the Cantor space. Let
X be the set of all f ∈ 2S such that

i) {φ ∈ S : f(φ) = 1} is consistent;
ii) for all φ we have f(φ) = 0↔ f(¬φ) = 1;
iii) f(ci = cj) = 0 for i 6= j;
iv) for all φ, if f(∃vφ(v)) = 1, then f(φ(cm)) = 1 for some m ∈ N.

Lemma 1.37 X is Gδ-subset of 2
S.

Proof Let X1 = {f : {φ : φ(f) = 1}} is consistent. Let I be the set of finite
subsets of S that are inconsistent. Then

X1 =
⋂

A∈I

{f : f(φ) = 0 for some φ ∈ A}

and X1 is closed.
Also

X2 =
⋂

φ∈S

{f : f(φ) = 0↔ f(¬φ) = 1}

and
X3 =

⋂

i6=j

{f : f(ci = cj) = 0}

12



are closed.
Let F be the set of L∗-formulas with one free-variable. Then

X4 =
⋂

φ∈F

(
{f : f(∃vφ(v)) = 0} ∪

⋃

n∈N
{f : f(φ(cn)) = 1}

)

is Gδ. Since X = X1 ∩ . . . ∩X4, X is Gδ.
Thus X is a Polish subspace of 2S .
IfM ∈ Mod(L), let fM(φ) = 1 ifM |= φ and fM(φ) = 0 ifM |= ¬φ. It is

easy to see that fM ∈ X . If f ∈ X , then Henkin’s proof of Gödel’s Completeness
Theorem shows that there is an L-structureM with universe N such that:

i) if R is an n-ary relation symbol, then RM = {(n1, . . . , nm) : f(R(cn1 , . . . , cnm) =
1};

ii) if g is an m-ary function symbol, then gM : Nm → N is the function
where gM(n1, . . . , nm) = k if and only if f(g(cn1 , . . . , cnm) = cnk) = 1;

iii) if c is a constant symbol, then cM = n if and only if f(c = cn) = 1.
Thus M 7→ fM is a bijection between Mod(L) and X . The image of Bφ

is {f ∈ X : f(φ) = 1}. Thus this map is a homeomorphism and Mod(L) is a
Polish space.

Spaces of Compact Sets

We describe one more interesting example without giving proofs. For proofs see
Kechris [6] 4.F.

Definition 1.38 Let X be a topological space. Let K(X) be the collection
of all compact subsets of X . The Vietoris topology on K(X) is the smallest
topology such that for each open U ⊆ X the sets {A ∈ K(X) : A ⊆ U} and
{A ∈ K(X) : A ∩ U 6= ∅} are open.

Exercise 1.39 Suppose X is separable and D ⊆ X is a countable dense set.
Show that {A ⊆ D : A finite} is a dense subset of K(X). Thus K(X) is
separable.

Definition 1.40 Suppose X is a metric space. We define the Hausdorff metric
on K(X) by

dH(A,B) = max
(
max
a∈A

d(a,B),max
b∈B

d(b, A)
)
.

Exercise 1.41 Show that the Hausdorff metric on K(X) is compatible with
the Vietrois topology.

Theorem 1.42 If d is a complete metric on X, then dH is a complete metric
on K(X). In particular, if X is a Polish space, then so is K(X).

In 2.20 we show that {A ⊆ X : A is finite} is an Fσ subset of K(X).

13



2 Borel Sets

Definition 2.1 If X is any set, a σ-algebra on X is a collection of subsets of X
that is closed under complement and countable union. A measure space (X,Ω)
is a set X equipped with a σ-algebra Ω.

If (X,ΩX) and (Y,ΩY ) are measure spaces, we say f : X → Y is ameasurable
function if f−1(A) ∈ ΩX for all A ∈ ΩY . We say that (X,ΩX) and (Y,ΩY )
are isomorphic if and only if there is a measurable bijection with measurable
inverse.

Definition 2.2 If X is a topological space, the class of Borel sets B(X) is the
smallest σ-algebra containing the open sets.

IfX and Y are topological spaces, we say that f : X → Y is Borel measurable
if it is a measurable map between the measure spaces (X,B(X)) and (Y,B(Y )).

We say that a measure space (X,Ω) is a standard Borel space if there is a
Polish space Y such that (X,Ω) is isomorphic to (Y,B(Y )).

Lemma 2.3 Suppose X and Y are topological spaces and f : X → Y .
i) f is Borel measurable if and only if the inverse image of every open set is

Borel.
ii) If Y is separable, then f is Borel measurable if and only if the inverse

image of every basic open set is Borel.
iii) If Y is separable and f : X → Y is Borel measurable, then the graph of

f is Borel.

Proof If f : X → Y is Borel measurable, then the inverse image of every open
set is Borel.

i) Let Ω = {A ∈ B(Y ) : f−1(A) ∈ B(X)}. Suppose every open set is in Ω. If
A ∈ Ω, then f−1(Y \A) = X \f−1(A) is Borel and X \A ∈ Ω. If A0, A1, . . . ∈ Ω,
then f−1(

⋃
Ai) =

⋃
f−1(Ai) is Borel and

⋃
(Ai) ∈ Ω.

ii) Suppose O is open. There are basic open sets U0, U1, . . . such that O =⋃
Ui. Then f−1(O) =

⋃
f−1(Ui) is a countable union of Borel sets and hence

Borel.

iii) Let U0, U1, . . . be a basis for the topology of Y . Then the graph of f is

∞⋂

n=0

({(x, y) : y 6∈ Un} ∩ {(x, y) : x ∈ f
−1(Un)}.

Since each f−1(Un) is Borel so is the graph of f .

By ii) any continuous f : X → Y is Borel measurable. We will see later that
the converse of iii) is also true.

Since ⋂
Ai = X \

⋃
(X \Ai),

any σ-algebra is also closed under countable intersections. Thus B(X) contains
all of the open, closed, Fσ, and Gδ sets. We could generalize this further by
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taking Fσδ, intersections of Fσ-sets, Gδσ, unions of Gδ-sets, Fσδσ, Gδσδ . . ..
There is a more useful way of describing these classes.

Definition 2.4 Let X be a metrizable space. For each α < ω1 we define Σ0
α(X)

and Π0
α(X) ⊂ P(X) as follows:

Σ0
1(X) is the collection of all open subsets of X ;

Π0
α(X) is the collection of all sets X \A where A ∈ Σ0

α(X);
For α > 1, Σ0

α(X) is the collection of all sets X =
⋃
Ai where each Ai ∈

Π0
βi
(X) for some βi < α.

We say that A ∈∆0
α(X) if A ∈ Σ0

α(X) and A ∈ Π0
α(X).

When we are working in a single space we omit the X and write Σ0
α and Π0

α

instead of Σ0
α(X) and Π0

α(X).
Closed sets are Π0

1, Fσ-sets are Σ
0
2, Gδ-sets are Π

0
2,. . . .

Lemma 2.5 Suppose X is metrizable.
i) Σ0

α ∪Π
0
α ⊆∆0

α+1 for all α < ω1.
ii) B(X) =

⋃
α<ω1

Σ0
α.

iii) If X is infinite, then |B(X)| = 2ℵ0 .

Proof In any metric space every open set is both Fσ and Gδ, thus Σ
0
1 ∪Π

0
1 ⊆

∆1
0. i) then follows easily by induction. An easy induction shows that any

σ-algebra containing the open sets must contain Σ0
α for each α < ω1.

iii) If U0, U1, . . . is a basis for the topology, then every open set is of the
form

⋃
n∈S Un for some S ⊆ N, thus |Σ0

α| ≤ 2ℵ0 . Clearly |Π0
α| = |Σ

0
α|. Suppose

α < ω1 and |Π0
β| ≤ 2ℵ0 for all β < α. Then |

⋃
β<αΠ

0
β | < α and if F is the set

of f : N →
⋃
β<αΠ

0
β, then |F| ≤ (2ℵ0)ℵ0 = 2ℵ0 and for any A ∈ Σ0

α, there is

f ∈ F such that A =
⋃
f(n). Thus |Σ0

α| ≤ 2ℵ0 . Thus

|B(X)| =
∣∣∣
⋃

α<ω1

Σ0
α

∣∣∣ ≤ ℵ1 × 2ℵ0 = 2ℵ0 .

IfX is infinite, then every countable subset ofX isΣ0
2. Hence |B(X)| = 2ℵ0 .

We state the basic properties of these classes.

Lemma 2.6 i) Σ0
α is closed under countable unions and finite intersections.

ii) Π0
α is closed under countable intersections and finite unions.

iii) ∆0
α is closed under finite unions, finite intersections and complement.

iv) Σ0
α, Π

0
α and ∆0

α are closed under continuous inverse images.

Proof We prove i) and ii) simultaneously by induction on α. We know that i)
holds for the open sets. By taking complements, it is easy to see that if Σ0

α is
closed under countable unions and finite intersections, then Π0

α is closed under
countable intersections and finite unions.

Suppose α > 0. A0, A1, . . . ∈ Σ0
α. Let Ai =

⋃∞
j=0Bi,j where each Bi,j ∈ Π

0
β

for some β < α. Then

∞⋃

i=0

Ai =

∞⋃

i=0

∞⋃

j=0

Bi,j ∈ Σ
0
α.
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Suppose we have proved ii) for all β < α. Then

A0 ∩ A1 =

∞⋃

i=0

∞⋃

j=0

(B0,i ∩B0,j)

and each B0,i ∩ B0,j is Π
0
β for some β < α. Thus A0 ∩A1 is Σ0

α.

iii) is immediate from i) and ii).

iv) Suppose f : X → Y is continuous. We prove that if A ⊆ Y is Σ0
α

(respectively Π0
α), then so is f−1(A). If α = 0, this is clear. Since f−1(

⋃
Ai) =⋃

f−1(A) and f−1(Y \A) = X \ f−1(A), this follows easily by induction.

Corollary 2.7 If A ⊆ X × Y is Σ0
α (respectively Π0

α or ∆0
α) and a ∈ Y , then

{x ∈ X : (x, a) ∈ Y } is Σ0
α.

Proof The map x 7→ (x, a) is continuous.

Exercise 2.8 Suppose X is a Polish space and Y is a subspace of X . a) Show
that Σ0

α(Y ) = {Y ∩ A : A ∈ Σ0
α(X)} and Π0

α(Y ) = {Y ∩A : A ∈ Σ0
α(X)}.

b) This does not necessarily work for ∆0
α. Show that ∆0

2(Q) 6= {Q∩A : A ∈
∆0

2(Q)}.

Examples

We give several examples.

Example 2.9 If A ⊆ X is countable, then A ∈ Σ0
2.

Point are closed, so every countable set is a countable union of closed sets.

Example 2.10 Let A = {x ∈ N : x is eventually constant}. Then A is Σ0
2.

x ∈ A if and only if ∃m∀n > m x(n) = x(n+ 1).

If An = {x : x(n) = x(n+ 1)}, then An is clopen and

A =

∞⋃

m=0

⋂

n>m

An

is Σ0
2.

Example 2.11 Let A = {x ∈ N : x is a bijection}. Then A is Π0
2.

Let A0 = {x : ∀n∀m (n 6= m→ x(n) 6= x(m))}. Then

A0 =
∞⋂

n=0

⋂

n6=m

{x : x(n) 6= x(m)}
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is closed. Let A1 = {x : ∀n∃m x(m) = n}. Then

A1 =

∞⋂

n=0

∞⋃

m=0

{x : x(m) = n}

is Π0
2 and A = A0 ∩ A1 is Π0

2.

As these examples make clear, existential quantification over N (or Q or any
countable set) corresponds to taking countable union, while universal quantifi-
cation over a countable set corresponds to taking a countable intersection.

Example 2.12 For x ∈ 2N2

we can view x as coding a binary relation Rx on
N, by (i, j) ∈ Rf if and only if x(i, j) = 1. Then LO = {x : Rx is a linear
order} is a Π0

1-set and DLO = {x ∈ LO : Rx is a dense linear order} is Π0
2.

x ∈ LO if and only if the following three conditions hold
∀n∀m (x(n,m) = 0 ∨ x(m,n) = 0)
∀n∀m (n = m ∨ x(n,m) = 1 ∨ x(m,n) = 1)
∀n∀m∀k (x(n,m) = x(m, k) = 1→ x(n, k) = 1.

Thus LO is Π0
1. x ∈ DLO if and only if x ∈ LO and

∀n∀m (x(n,m) = 1→ ∃k x(n, k) = x(k,m) = 1).

Thus DLO is Π0
2.

Example 2.13 Let A be a countable set. TrA = {x ∈ 2A
<ω

: x is a tree}. Then
TrA is Π0

1.
The set {x ∈ Tr2 : x has an infinite path} is also Π0

1.

x ∈ TrA if and only if ∀σ∀τ ⊆ σ (x(σ) = 1→ x(τ) = 1).
By König’s Lemma, a binary tree T has an infinite path if and only if T is
infinite. Thus x ∈ WF2 if and only if x ∈ Tr2 and

∀n∃σ ∈ 2n x(σ) = 1

At first this looks Π0
2, but the existential quantifier is only over a finite set.

Indeed
WF2 =

⋂

n∈N

⋃

σ∈2n

{x : x(σ) = 1}

and
⋃
σ∈2n{x : x(σ) = 1} is a clopen set.

Example 2.14 We say that x ∈ C is normal if

lim
n→∞

1

n+ 1

n∑

i=0

x(i) =
1

2
.
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Let N = {x ∈ C : x is normal}.
x is normal if and only if

∀k > 0∃m∀n

(
n > m→

∣∣∣∣∣
1

2
−

1

n+ 1

n∑

i=0

x(i)

∣∣∣∣∣ <
1

k

)
.

If

An,k =

{
x ∈ C :

∣∣∣∣∣
1

2
−

1

n+ 1

n∑

i=0

x(i)

∣∣∣∣∣ <
1

k

}
,

then An,k is clopen and

N =
∞⋂

k=1

∞⋃

m=0

⋂

n≥m

An,k.

Hence N is a Π0
3-set.

Example 2.15 Models of a first order theory.

Suppose L is a first order language. Let L∗, Mod(L), τ0 and τ1 be as in 1.35.
Suppose φ is an L∗ω1,ω

-sentence. Let Mod(φ) = {M ∈ Mod(L) :M |= φ}.
We claim that Mod(φ) is a Borel subsets of Mod(L). It is enough to prove this
for the weaker topology τ0. In τ0, if φ is quantifier-free then Mod(φ) is clopen.
The claim follows by induction since,

Mod(¬φ) = Mod(L) \Mod(φ),

Mod(
∞∧

i=1

φi) =
∞⋂

i=0

Mod(φi)

and

Mod(∃v φ(v)) =
∞⋃

n=0

Mod(φ(cn)).

If T is a first order L-theory, then

Mod(T ) =
⋂

φ∈T

Mod(φ)

is Borel.

Exercise 2.16 Show that if φ is a first order L∗-sentence, then Mod(φ) is Σ0
n

for some n. (hint: prove that n depends only on the quantifier rank of φ.)
Conclude that if T is a first order theory, then Mod(T ) is Π0

ω.

In the topology τ1, Mod(φ) is clopen for all first order φ. Thus Mod(T ) is
closed.

Example 2.17 Isomorphism classes of structures.
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SupposeM ∈ Mod(L). There is φM ∈ Lω1,ω, the Scott sentence ofM (see
[11] 2.4.15) such that if M1 is a countable L-structure, then M ∼=M1 if and
only ifM1 |= φM. Thus

{M1 ∈M :M1
∼=M} = Mod(φM)

is a Borel set.

Example 2.18 Let X = C(I) × I and let D = {(f, x) : f is differentiable at
x}. Then D ∈ Π0

3.

f is differentiable at x if and only if
∀n∃m ∀p, q ∈ Q ∩ [0, 1] (|x− p| < 1

m
∧ |x− q| < 1

m
)→

|(f(p)− f(x))(q − x)− (f(q)− f(x))(p− x)| ≤ 1
n
|(p− x)(q − x)|.

The inner condition is closed in C(I) × I so this set is Π0
3.

Example 2.19 If X is a Polish space, then {(A,B) ∈ K(X)2 : A ⊆ B} is Π0
2.

If a ∈ A \ B, then there is a basic open set U such that a ∈ U and U ∩ B = ∅.
Fix U0, U1, . . . a basis for X . Then A ⊆ B if and only if

∀n (Un ∩ B = ∅ → Un ∩ A = ∅).

This is a Π0
2 definition.

Example 2.20 Suppose X is a Polish space. Then {A ⊆ X : A is finite} is an
Fσ subset of K(X).

A is finite if and only there are basic open set U1, . . . , Un such that A ⊆
U1 ∪ . . . ∪ Un such that if Vi and Vj are disjoint basic open subsets of Ui, then
A ∩ V0 = ∅ or A ∩ V1 = ∅.

Fix U0, U1, . . . a basis for the open sets. If F ⊆ N is finite, then

BF = {A : A ⊆
⋃

i∈F

Vi}

is open. Let SF = {(i, j) ∈ N : Ui and Uj are disjoint subsets of Uk for some
k ∈ F}. The set Ci,j = {A : A ∩ Ui = ∅ or A ∩ Uj = ∅} is closed. Thus

{A ∈ K(X) : A is finite } =
⋃

F⊆N finite

(
BF ∩

⋂

(i,j)∈SF

Ci,j

)

is Σ0
2.

Exercise 2.21 Show that {A ∈ K(X) : A is perfect} is Π0
2.
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Changing the Topology

Suppose X is a Polish space, let τ be the topology of X . We will often prove
interesting results about Borel sets A ⊆ X , by refining τ to a new topology τ1
with the same Borel sets such that A is clopen in the new topology.

We start with one preparatory lemma.

Lemma 2.22 Suppose X and Y are disjoint Polish spaces. The disjoint union
X ] Y is the space X ∪ Y where U ⊆ X ∪ Y is open if and only if U ∩X and
U ∩ Y are both open. Then X ] Y is a Polish space.

Proof Let dX be a compatible metric on X and dY be a compatible metric on
Y with dX < 1 and dY < 1. Define d̂ on X ] Y by

d̂(x, y) =

{
dX(x, y) if x, y ∈ X
dY (x, y) if x, y ∈ Y
2 otherwise.

It is easy to see that X and Y are clopen in this topology and the open subsets
of X ] Y are unions of open subsets of X and open subsets of Y . Any Cauchy
sequence must be eventually in either X or Y and converges in the original
topology so this is a complete metric.

Lemma 2.23 Let X be a Polish space with topology τ . Suppose F ⊆ X is
closed. There is a Polish topology τ1 on X refining τ such that F is clopen in
τ1, and τ and τ1 have the same Borel sets.

Proof We know that X \F has a Polish topology and F has a Polish topology.
Let τ1 be the Polish topology on the disjoint union of X \ F and F . Then F
is open. The open subsets of τ1 are either open in τ or intersections of τ open
sets with F . In particular they are all Borel in τ . Thus the Borel sets of τ1 are
the Borel sets of τ .

Theorem 2.24 Let X be a Polish space with topology τ . Suppose A ⊆ X is
Borel. There is a Polish topology τ ∗ on X such that A is clopen and τ∗ has the
same Borel sets as τ .

Proof Let Ω = {B ∈ B(X) : there is a Polish topology on X such that B is
clopen. By the previous lemma, if B is open or closed, then B ∈ Ω and Ω is
closed under complements.

Claim Ω is closed under countable intersections.
Suppose A0, A1, . . . ∈ Ω and B =

⋂
Ai. Let τi be a Polish topology on X

such that Ai is clopen in τi and τ and τi have the same Borel sets. The product∏
(X, τi) is a Polish space. Let j : X →

∏
(X, τi) be the diagonal embedding

j(x) = (x, x, x, . . .). Let τ∗ be the topology j−1(U) where U is an open subset
in the product topology. Because j(X) is a closed subset of the product, this is
a Polish topology. A sub-basis for the topology τ ∗ can be obtained by taking
inverse images of set {f : f(i) ∈ Oi} where Oi is an open set in τi. Thus τ

∗ has
a sub-basis of τ -Borel sets and every τ∗-Borel set is τ -Borel.
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Since Ai is τi-clopen, it is also clopen in τ∗. Thus
⋂
Ai is τ

∗-closed. One
further application of the previous lemma allows us to refine τ ∗ to τ∗∗ keeping
the same Borel sets but making

⋂
Ai clopen.

Thus Ω is a σ-algebra, so Ω = B(X).

We can use this observation to deduce several important results.

Theorem 2.25 (Perfect Set Theorem for Borel Sets) If X is a Polish space
and B ⊆ X is an uncountable Borel set, then B contains a perfect set.

Proof Let τ be the topology onX . We can refine the topology to τ1 such that B
is closed. Since B is uncountable, by 1.27 there is a nonempty τ1-perfect P ⊆ B
and f : C → P a homeomorphism. Since τ1 refines τ0, f is also continuous in the
topology τ . Since C is compact, P is τ -closed. Since P has no isolated points
in τ1, this is still true in τ , so P is a perfect subsets of B.

Theorem 2.26 If X is a Polish space and B ⊆ X is Borel,
i) there is f : N → X continuous with f(N ) = B;
ii) there is a closed F ⊆ N and g : F → X continuous and one-to-one with

g(F ) = B;

Proof We refine the topology on X so that B is closed and X is still a Polish
space. Then B with the subspace topology is Polish. By 1.17 we can find a
continuous surjective f : N → B. f is still continuous with respect to the
original topology of X . ii) is similar using 1.19.

We give one more application of this method.

Theorem 2.27 If (X, τ) is Polish, Y is separable and f : X → Y is Borel
measurable, then we can refine τ to τ∗ with the same Borel sets such that f is
continuous.

Proof Let U0, U1, . . . be a countable basis for Y . Let τ∗ be a Polish topology
on X such that f−1(Ui) is open for all i and the τ∗-Borel sets are exactly the
τ -Borel sets.

Exercise 2.28 Suppose X is a Polish space and B ⊆ X × X is Borel. Is it
always possible to put a new Polish topology on X such that B is clopen in the
new product topology on X ×X?

Borel Isomorphisms

Definition 2.29 If X and Y are Polish spaces, A ∈ B(X) and B ∈ B(Y ), we
say that f : X → Y is a Borel isomorphism if is a Borel measurable bijection
with Borel measurable inverse.

Example 2.30 If A ⊆ X and B ⊆ Y are countable and |A| = |B|, then any
bijection f : A→ B is a Borel isomorphism.
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In this case the inverse image of any open set is countable, and hence, Fσ.

Example 2.31 The Cantor space C is Borel isomorphic to the closed unit in-
terval I.

Let C = {x ∈ C : x is eventually constant}. Let f : C \ C → I by

f(x) =
∞∑

n=0

x(n)

2n+1
.

Then f is a homeomorphism between C\C and the dyadic-irrationals in I. Since
C is countable, we can also find a bijection g between C and the dyadic-rationals.
Then

h(x) =

{
f(x) if x 6∈ C
g(x) if x ∈ C

is a Borel isomorphism between C and I.

Corollary 2.32 If X is a Polish space, there is a Borel A ⊆ C and a Borel
isomorphism f : X → A.

Proof By 1.34 there is a Borel B ⊆ H = IN and a homeomorphism g : X → B.
The Borel isomorphism between I and C induces a Borel isomorphism between
H and CN. But CN is homeomorphic to C. Thus there is h : H → C a Borel
isomorphism. Let f = h ◦ g.

On the other hand if B is an uncountable Borel set, then B contains a perfect
subset P that is homeomorphic to C.

We will show that the Schröder-Bernstein Theorem holds for Borel isomor-
phisms. This will imply that any two uncountable Borel sets are Borel isomor-
phic.

Lemma 2.33 Suppose X and Y are Polish spaces, f : X → Y is a Borel
isomorphism between X and f(X), and g : Y → X is a Borel isomorphism
between Y and g(Y ). Then there is a Borel isomorphism between X and Y .

Proof We follow the usual proof of the Schröder-Bernstein Theorem. We define
X = X0 ⊇ X1 ⊇ X2 . . . and Y = Y0 ⊇ X1 ⊇ X2 . . . by Xn+1 = g(f(Xn)) and
Yn+1 = f(g(Yn)). Since f−1 and g−1 are Borel measurable, each Xn and Yn is
Borel. Also, X∞ =

⋃
Xn and X∞ =

⋃
Xn are Borel.

Then f |(Xn \Xn+1) is a bijection between Xn \Xn+1 and Yn+1 \ Yn+2 and
g|(Yn \ Yn+1) is a bijection between Yn \ Yn+1 and Xn+1 \Xn+2. Also f |X∞ is
a bijection between X∞ and Y∞.

Let h : X → Y be the function

h(x) =

{
f(x) if x ∈ X2n \X2n+1 for some n or x ∈ X∞
g−1(x) if x ∈ X2n+1 \X2n+2 for some n.

Then h : X → Y is a Borel isomorphism.
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Corollary 2.34 i) If X is a Polish space and A ⊆ X is an uncountable Borel
set, then A is Borel isomorphic to C.

ii) Any two uncountable Polish spaces are Borel isomorphic.
iii) Any two uncountable standard Borel spaces are isomorphic.

Proof
i) If (X, τ) is a Polish space and A ⊆ X is Borel, we can refine the topology

of X making A clopen but not changing the Borel sets. Then A is a Polish space
with the new subspace topology. We have shown that A is Borel isomorphic to
a Borel subset of C and, by the Perfect Set Theorem, there is a Borel subset of
A homeomorphic to C. Thus there is a Borel isomorphism f : A → C. Since
the new topology has the same Borel sets as the original topology, this is also a
Borel isomorphism in the original topology.

ii) and iii) are clear from i).

Exercise 2.35 † Prove that if X and Y are Polish spaces, A ⊆ X is Borel and
f : X → Y is continuous, and f |A is one-to-one, then f(A) is Borel. Conclude
that f |A : A→ B is a Borel isomorphism. [This can be proved by the methods
at hand, but we will give a very different proof later.]

The Borel Hierarchy

When constructing the Borel sets, do we really need Σ0
α-sets for all α < ω1? If

X is countable and Y ⊂ X , then Y and X \ Y are countable unions of points.
Thus Y ∈ ∆0

2. On the other hand, we will show that if X is an uncountable
Polish space, then Σ0

α 6= Σβ for any α 6= β.
If U ⊆ Y ×X and a ∈ Y , we let Ua = {b ∈ X : (a, b) ∈ U}. In this way we

think of U as a family of subsets of X parameterized by Y .

Definition 2.36 We say that U ⊂ Y ×X is universal-Σ0
α if U ∈ Σ0

α(Y ×X),
and if A ∈ Σ0

α(X), then A = Ua for some a ∈ A.

We define Π0
α universal sets similarly.

Lemma 2.37 If X is a separable metric space, then for all 1 < α < ω1 there
is a Σ0

α-universal set Uα ⊆ C ×X and a Π0
α-universal set Vα ⊆ C ×X.

Proof Let W0,W1, . . . be a basis of open sets for X .
Let U1 = {(f, x) : ∃n ∈ N f(n) = 1 ∧ x ∈ Wn}. Since

U1 =
⋃

n∈N
{(f, x) : f(n) = 1 ∧ x ∈Wn},

U1 is open. If A ⊆ X is open, define f ∈ C such that f(n) = 1 if and only if
Wn ⊆ A. Then x ∈ A if and only if (f, x) ∈ U0. Thus U1 is Σ0

1-universal.
If Uα is Σ0

α-universal, then Vα = (C ×X) \ Uα is Π0
α-universal.

Suppose Vβ is Π0
α-universal for all β < α. Choose β0 ≤ β1 ≤ . . . a sequence

of ordinals such that sup{βn + 1 : n = 0, . . .} = α.
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Let Ûα = {(n, f, x) ∈ N×C ×X : (f, x) ∈ Vβn}. Then Ûα =
⋃
n∈N{n}×Vβn

is Σ0
α.
Using the natural homeomorphism between C and CN we can identify every

f ∈ C with (f0, f1, f2, . . .) ∈ CN. Then Uα = {(f, x) : ∃n (n, fn, x) ∈ Ûα} is Σ0
α.

If A ⊆ X is Σ0
α, then there are B0, B1, . . . such that Bn is Π0

βn
and A =

⋃
Bn.

Choose fn such that x ∈ Bn if and only if (fn, x) ∈ Vβn and choose f coding
(f0, f1, f2, . . .). Then (f, x) ∈ Uα if and only if x ∈ A.

We can now prove that in an uncountable Polish space the Borel hierarchy
is a strict hierarchy of ω1-levels.

Corollary 2.38 i) Σ0
α(C) 6= Σ0

α(C) for any α < ω1.
ii) If X is an uncountable Polish space, then Σ0

α(X) 6= Σ0
α(X) for any

α < ω1. In particular, Σ0
α(X) is a proper subset of ∆0

α+1(X).

Proof
i) Let U ⊆ C × C be Σ0

α-universal. Let Y = {x : (x, x) 6∈ Uα}. Clearly
Y ∈ Π0

α. If Y ∈ Σ0
α, then there is y ∈ X such that x ∈ Y if and only if

(y, x) ∈ Uα. Then
y ∈ Y ⇔ (y, y) ∈ Uα ⇔ y 6∈ Y,

a contradiction.

ii) Suppose X is an uncountable Polish space. Then X contains a perfect
set P homeomorphic to C. If Σ0

α(X) = Π0
α(X), then, by 2.8, Σ0

α(P ) = Σ0
α(P ),

contradicting i).
Since Σ0

α(X) 6= Π0
α(X), there is A ∈ Π0

α(X) \Σ0
α(X).

This gives us the following picture of the Borel Hierarchy.
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Definition 2.39 Let X and Y be Polish spaces, with A ⊆ X and B ⊆ Y . We
say that A is Wadge-reducible to B if there is a continuous f : X → Y such that
x ∈ A if and only if f(x) ∈ B for all x ∈ A.
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We write A ≤w B if A is Wadge-reducible to B.

Note that if A ≤w B, then X \A ≤w Y \B.

Example 2.40 If A ⊆ N is open, then A ≤w {x ∈ N : ∃n x(n) = 1}.

Let A =
⋃
n Un where each Un is a basic clopen set. Let f : N → N such

that
(f(x))(n) =

{
1 if x ∈ Un
0 otherwise.

.

If σ ∈ 2<ω,

f−1(Nσ) =
⋂

σ(n)=1

Un ∩
⋂

σ(n)=0

X \ Un

a clopen set. Thus f is continuous. Clearly x ∈ A if and only if ∃n f(n) = 1.

Definition 2.41 For Γ = Σ0
α or Π0

α we say that A ⊆ X is Γ-complete if
A ∈ Γ(X) and if B ∈ Γ(X), then B ≤w A.

Thus {x ∈ N : ∃n x(n) = 1} is Σ0
1-complete.

Let Γ be Σ0
α or Π0

α. If A ∈ Γ and B ≤w A, then, by 2.6 iv), B ∈ Γ. Let
Γ̌ = {X \A : A ∈ Γ. Note that if A is Γ-complete, then X \A is Γ̌-complete.

Lemma 2.42 If A ⊆ X is Γ-complete, then A 6∈ Γ̌.

Proof We know there is B ∈ Γ \ Γ̌. Since A is complete B ≤w A. If A ∈ Γ̌,
then B ∈ Γ̌, a contradiction.

Example 2.43 The set A = {x ∈ N : ∃n∀m > n x(m) = 0} of eventually zero
sequences in Σ0

2-complete.

Suppose B is Σ0
2. Suppose B =

⋃
n Fn where Fn is closed. Let Tn ⊆ N<ω be

a tree such that Fn = [Tn]. We give a program to “compute” (f(x))(m) from x
and the sequence of trees run the following program until it outputs (f(x))(m).

1) Let n = i = s = 0.
2) If x|s ∈ Ti, output (f(x))(n) = 0, set s ← s + 1; otherwise, output

(f(x))(n) = 1, set i← i+ 1
3) Let n = n+ 1
4) Go to 2)

The sequence f(x) is an infinite sequence of 0s and 1s. If x ∈ B, there is a
least m such that x ∈ [Tm] we will eventually see that x 6∈ [Tm] for j ≤ m, and
increment i until we get to m. Once i reaches m we will always have x|s ∈ Ti,
so we will only output 0s. In this case f(x) ∈ A.

If x 6∈ B, then for each i we will at some point realize that x 6∈ [Ti] and
output a 1. Thus f(x) 6∈ A. Thus B ≤w A.

It follows that A is Σ0
2 but not Π0

2.

Exercise 2.44 Show that {f ∈ N : f is onto} is Π0
2-complete.

Exercise 2.45 Let D = {x ∈ N : lim
n→∞

x(n) = ∞}. Show that D is Π0
3-

complete.
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The Baire Property

We begin by recalling some basic ideas from analysis. Let X be a Polish space.

Definition 2.46 We say that A ⊆ X is nowhere dense set , if whenever U ⊆ X
is open and nonempty, there is a nonempty open V ⊆ U such that A ∩ U = ∅.

We say that B ⊆ X is meager if X is a countable union of nowhere dense
sets.

Exercise 2.47 Show that Cantor’s “middle third” set is nowhere dense.

Exercise 2.48 We say that I ⊆ P(X) is an ideal if i) ∅ ∈ I , ii) if A ∈ I and
B ⊆ A, then B ∈ I , and iii) if A,B ∈ I , then A ∪ B ∈ I . We say that an ideal
I is a σ-ideal if

⋃
nAn ∈ I , whenever A0, A1, . . . ∈ I .

a) Show that the nowhere dense sets form an ideal.
b) Show that the meager sets form a σ-ideal.

Exercise 2.49 a) Show that if A is nowhere dense, then A is nowhere dense.
b) Show that every meager set is contained in a meager Fσ-set.

Exercise 2.50 Show that if U is open, then U \ U is nowhere dense.

Lemma 2.51 If F is closed, then F \ intr(F ) is nowhere dense, where intr(F )
is the interior of F .

Proof Let V be open such that V ∩ (F \ intr(F )) is nonempty. Since V 6⊆
intr(F ), V \ F is nonempty open and (V \ F ) ∩ (F \ intr(F )) = ∅.

The next result is a classical fact from analysis.

Theorem 2.52 (Baire Category Theorem) If X is a Polish space, then X
is nonmeager.

Proof Suppose X =
⋃
nAn where each An is nowhere dense. Choose open sets

U0 ⊂ U1 ⊂ U2 ⊂ . . . such that Un+1 ⊆ Un, diam (Un) <
1

n+1 and Un ∩ An = ∅.
Choose xn ∈ Un. Then (xn) is a Cauchy sequence. Suppose xn → x. Then
x ∈

⋂
n Un. Thus x ∈ X \

⋃
nAn a contradiction.

Definition 2.53 For A,B ⊆ X we define A =∗ B if and only if A4B is meager,
where A4B = (A \B) ∪ (B \A).

Exercise 2.54 a) Show that =∗ is an equivalence relation.
b) Show that if A =∗ B, then X \A =∗ X \B.
c) Show that if An =∗ Bn for n = 0, 1, . . ., then

⋃
nAn =∗

⋃
nBn.

Definition 2.55 Let A ⊆ X . We say that A has the Baire property if there is
an open set U such that A =∗ U .

Let BP= {A ⊆ X : A has the Baire property}. Clearly every open set has
the Baire property. If F is closed, then by 2.51 F \ intr(F ) is nowhere dense.
Thus every closed set has the Baire property. In fact BP is closed complements.
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Lemma 2.56 If A has the Baire property, then X \A has the Baire property.

Proof Thus if U is open and A =∗ U , then, by 2.54 b)

X \A =∗ X \ U =∗ intr(X \ U).

The later equality holding by 2.51.

By 2.54c), BP is closed under countable unions.

Corollary 2.57 BP is a σ-algebra containing the Borel sets.

In fact BP can contain many non Borel sets. For example if F ⊆ R is
Cantor’s “middle third” set then any A ⊆ F is nowhere dense and in BP. Thus

|BP | = 22ℵ0
, while there are only 2ℵ0 Borel sets.

Exercise 2.58 Show that if A has the Baire property, then there is a Gδ-set
B and an Fσ-set C such that B ⊆ A ⊆ F and F \G is meager

Exercise 2.59 Show that if A has the property of Baire, then either A is
meager or there is σ such that Nσ \A is meager.

Do all sets have the Baire property?

Exercise 2.60 Use the axiom of choice to construct a subset of R without the
Baire Property.

3 Effective Descriptive Set Theory: The Arith-

metic Hierarchy

Several ideas from logic have has a big impact on descriptive set theory. In this
chapter we will start to study the influence of recursion theory on descriptive set
theory. At first it will look like an interesting but perhaps shallow analogy, but
as we continue to develop these ideas in §and apply them in §8 we will eventually
see that they lead to important new results that do not have classical proofs.
Moschovakis [14], Kechris’ portion of [12] and Mansfield and Weitkamp [10] are
excellent reference for effective descriptive set theory.

Recursion Theory Review

We recall some of the basic ideas we will need from recursion theory. We assume
that the reader has some intuitive idea what a “computer program” is. This
could be a very precise notion like a Turing machine or an informal notion like
Pascal program.

Definition 3.1 A partial function f : N → N is partial recursive if there is a
computer program P such that P halts on input n if and only if n ∈ dom (f)
and if P halts on input n, then the output is f(n). We say that a set A ⊆ N is
recursive if and only if its characteristic function is recursive.
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We can code computer programs by integers so that each integer codes a
program. Let Pe be the machine coded by e. Let φe be the partial recursive
function computed by e. We write φe(n) ↓s if Pe halts on input n by stage s
and φe(n) ↓ if Pe halts on input n at some stage. Our enumeration has the
following features.

Fact 3.2 i) [universal function] The function (e, n) 7→ φe(n) is partial recursive.
ii) The set {(e, n, s) : φe(n) ↓s} is recursive.
iii) [halting problem] The set {(e, n) : φe(n) ↓} is not recursive.
iv) [parameterization lemma] If F : N2 → N is partial recursive, there is a

total recursive d : N→ N such that

φd(x)(y) = F (x, y)

for all x, y.

Definition 3.3 We say that A ⊆ N is recursively enumerable if there is a partial
recursive function f : N→ N such that A is the image of f .

Fact 3.4 The following are equivalent
a) A is recursively enumerable
b) A is the domain of a partial recursive function.
c) A = ∅ or A is the image of a total recursive function.
d) there is a recursive B such that A = {n : ∃m (n,m) ∈ B}.

Fact 3.5 a) If A and B are recursively enumerable, then so are A ∪ B and
A ∩ B.

b) If A ⊆ N× N is recursively enumerable so is {n : ∃m (n,m) ∈ A}.
c) If A is recursively enumerable and f : N → N is total recursive, then

f−1(A) is recursively enumerable.

Exercise 3.6 If you haven’t seen them before prove the statements in the last
Fact.

A program with oracle x ∈ N is a computer program which, in addition to
the usual steps, is allowed at any stage to ask the value of x(n).

We say that f is partial recursive in x if there is a program with oracle x
computing f and say that A ⊆ N is recursive in x if the characteristic function of
A is recursive in x. The facts above relativize to oracle computations. We write
φxe (n) for the value of the partial recursive function in x with oracle program
Pe on input n. One additional fact is useful.

Fact 3.7 (Use Principle) If φxe (n) ↓, then there is m such that if x|m = y|m,
then φye (n) = φxe (n).
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Proof The computation of Pe with oracle x on input n makes only finitely
many queries about x. Choose m greater than all of the queries made.

We may also consider programs with finitely many oracles.
For x, y ∈ N we say x is Turing-reducible to y and write x ≤T y if x is

recursive in y. There is another useful reducibility that is the analog of Wadge-
reducibility for N.

Definition 3.8 We say A is many-one reducible to B if there is a total recursive
f such that n ∈ A if and only if f(n) ∈ B for all n ∈ N. We write A ≤m B if A
is many-one reducible to B.

Clearly if A ≤m B, then A ≤T B.
There is one subtle fact that will eventually play a key role.

Theorem 3.9 (Recursion Theorem) If f : N × N → N is total recursive,
there is an e such that φe(n) = φf(n) for all n.

Proof Let

F (x, y) =

{
φφx(x)(y) if φx(x) ↓
↑ if φx(x) ↑

.

By the Parameterization Lemma, there is a total recursive d such that

φd(x)(y) = F (x, y).

Let ψ = f ◦ d. There is m such that ψ = φm. Since ψ is total φd(m) = φφm(m).
Let e = d(m). Then

φe = φd(m) = φφm(m) = φψ(m) = φf(d(m)) = φf(e).

For those of you who haven’t seen this before here is a sample of the many
applications of the Recursion Theorem. Let

g(e, n) =

{
1 if e = n
0 if e 6= n
.

By the Parameterization Lemma, there is a total recursive f such that φf(e)(n) =
g(e, n). By the Recursion Theorem there is an e such that φe(n) = 1 if n = e and
φe(n) = 0 if n 6= e. So this function “recognizes” its own code. The Recursion
Theorem will be very useful in §7.

Computable Functions on N

There is also a notion of computable function f : N → N .

Definition 3.10 We say that f : N → N is computable if there is an oracle
program P such that if x ∈ N and P is run with oracle x on input n, then P
halts and outputs (f(x))(n).
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We say that f : N → N is computable from z if there is a two oracle program
P such that if x ∈ N and P is run with oracles z and x on input n, then M
halts and outputs (f(x))(n).

Lemma 3.11 f : N → N is continuous if and only if there is z ∈ N such that
f is computable from z.

Proof
(⇐) Let P be the oracle program computing f from z. Suppose f(x) = y.

By the Use Principle, for any m there is an n such that if x|n = z|n, then
f(z)|m = y|m. Thus Nx|n ⊆ f

−1Ny|m and f is continuous.

(⇒) Let X = {(τ, σ) : f−1(Nσ) ⊆ Nτ}. Since f is continuous, for all x ∈ N
if f(x) = y, then for all n there is an m such that (x|m, y|n) ∈ X .

We claim that f is computable from X . Suppose we given oracles X and x
and input n. We start searching X until we find (τ, σ) ∈ X such that τ ⊂ x
and |σ| > n. Then (f(x))(n) = σ(n).

The Arithmetic Hierarchy

For the next few sections we will restrict our attention to Polish spaces X =
Nk ×N l where k, l ≥ 0.1 Of course if k > 0 and l = 0, X is homeomorphic to
N while if l > 0, then X is homeomorphic to N . (In [14] this theory is worked
out for “recursively presented Polish spaces”.)

Let X = Nk × N l. Let SX = {(m1, . . . ,mk, σ1, . . . , σl) : mi, . . . ,mk ∈
N, σ1, . . . , σl ∈ N<ω}. For σ = (mi, . . . ,mk, σ1, . . . , σl) ∈ SX , let

Nσ = {(n1, . . . , nk, f1, . . . , fl) ∈ X : ni = mi if i ≤ k and fi ⊃ σi if i = 1 ≤ l}.

Then {Nσ : σ ∈ SX} is a clopen basis for the topology on X . Of course SX is a
countable set and there is a recursive bijection i 7→ σi between N and SX . Thus
we can identify SX with N and talk about things like recursive subsets of SX
and partial recursive functions f : N→ SX .

Definition 3.12 We say that A ⊆ X is Σ0
1 if there is a partial recursive

f : N→ SX such that A =
⋃
nNf(n).

Note that here we are using a “lightface” Σ0
1 rather than the “boldface”

Σ0
1 that denotes the open subsets of X . Of course every Σ0

1 set is open, but
there are only countably many partial recursive f : N→ SX thus there are only
countably many Σ0

1 sets. Thus Σ0
1 ⊂ Σ0

1. Relativizing these notions we get all
open sets.

Definition 3.13 If x ∈ N we say that A ⊆ X is Σ0
1(x) if there is f : N→ SX

partial recursive in x such that A =
⋃
nNf(n).

Lemma 3.14 Σ0
1 =

⋃

x∈N

Σ0
1(x).

1At times we might also consider spaces
�
k ×N l × Cm but everything is similar
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We will tend to prove things only for Σ0
1 sets. The relativization to Σ0

1(x)
sets is usually straightforward.

For the two interesting examples X = N and X = N we get slightly more
informative characterizations.

Lemma 3.15 i) A ⊆ X is Σ0
1 if and only if there is a recursively enumerable

W ⊆ SX such that A =
⋃
η∈W Nη. In particular A ⊆ N is Σ0

1 if and only if A
is recursively enumerable.

ii) A ⊆ N is Σ0
1 if and only if there is a recursive S ⊆ N<ω such that

A =
⋃
σ∈S Nσ.

Proof
i) This is clear since the recursively enumerable sets are exactly the images

of partial recursive functions.

ii) In this case SX = N<ω. Clearly if S ⊆ N<ω is recursive, there is f : N→
N<ω partial recursive with image S and

⋃
σ∈N<ω Nσ is Σ0

1.
Suppose A =

⋃
nNf(n) where f is partial recursive let S = {σ : there is

n ≤ |σ|, the computation of f(n) halts by stage |σ| and f(n) ⊆ σ. It is easy to
see that S is recursive. If σ ∈ S, then there is an n such that f(n) ⊆ σ, then
Nσ ⊆ Nf(n) ⊆ A. On the hand if f halts on input n, there is m ≥ n, |f(n)| such
that f halts by stage m. If τ ⊃ σ and |τ | ≥ m, then τ ∈ S. Thus

⋃

σ∈S

Nσ ⊃
⋃

τ⊃f(n),|τ |=m

Nτ = Nσ.

It follows that A =
⋃
σ∈S Nσ.

We have natural analogs of the finite levels of the Borel hierarchy.

Definition 3.16 Let X = Nk × N l. We say that A ⊆ X is Π0
n if and only if

X \A is Σ0
n.

We say that A ⊆ X is Σ0
n+1 if and only if there is B ⊆ N ×X in Π0

n such
that

x ∈ A if and only if ∃n (n, x) ∈ B.

We say that A is ∆0
n if it is both Σ0

n and Π0
n.

We say that A ⊆ X is arithmetic if A ∈ ∆0
n for some n.

Lemma 3.17 A ⊆ N is Π0
1 if and only if there is a recursive tree T ⊆ N<ω

such that A = [T ].

Proof If S is a recursive tree such that X \A =
⋃
σ∈S Nσ, let

T = {σ ∈ N<ω : ∀m ≤ |σ| σ|m 6∈ S}.

Then T is recursive and, as in 1.14 A = [T ].

The next exercises shows that it is not always possible to find a recursive
pruned tree T with A = [T ].
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Exercise 3.18 a) Show that if T is a recursive pruned tree, then the left-most
path through T is recursive.

b) Let T = {σ ∈ N<ω : if e < |σ| and φe(e) halts by stage |σ|, then φe(e)
halts by stage σ(e)}. Show that T is a recursive tree. Suppose f ∈ [T ]. Show
that φe(e) halts if and only if it halts by stage f(e). Conclude that there are
no recursive paths through T and, using a), that there is no recursive pruned
subtree of T .

We show that Σ0
n and Π0

n have closure properties analogous to those proved
in 2.6. The definition of computable function made in 3.10 makes sense for maps
f : X → Y where both X and Y are of the form Nk ×N l

Lemma 3.19 i) Σ0
n is closed under finite unions, finite intersections, and com-

putable inverse images.
ii) If A ⊆ N×X ∈ Σ0

n, then {x ∈ X : ∃n (n, x) ∈ A} ∈ Σ0
n.

iii) If f : X → N is computable and A ⊆ N×X is Σ0
n then {x ∈ X : ∀m <

f(x) (m,x) ∈ A} ∈ Σ0
n.

iv) Similarly Π0
n is closed under union, intersection, computable inverse im-

ages, ∀n and ∃n < f(x).
v) Σ0

n ⊆ ∆0
n+1.

Proof We prove this for Σ0
1 and leave the induction as an exercise.

i) Suppose W0 and W1 are recursively enumerable subsets of SX and Ai =⋃
η∈Wi

Nη. ReplacingWi by the recursively enumerable set {ν : ∃η ∈Wi η ⊆ ν}
if necessary we may assume that if ν ∈Wi and η ⊃ ν, then η ∈Wi. Then

A0 ∪A1 =
⋃

η∈W0∪W1

Nη

and
A0 ∩A1 =

⋃

η∈W0∩W1

Nη

andW0∪W1 andW0∩W1 are recursively enumerable. Thus A0∪A1 and A0∩A1

are Σ0
1.

If f : X → Y is computable with program Pe, let

G = {(η, ν) ∈ SX × SY : x ∈ Nη ⇒ f(x) ∈ Nν}.

Then (η, ν) ∈ G if and only if for all m < |ν| the program Pe using oracle
η halts on input m and outputs ν(m).2 Thus G is recursively enumerable.
Suppose A =

⋃
ν∈W Nν whereW is recursively enumerable, let V = {η : ∃ν (ν ∈

W ∧ (η, ν) ∈ G}. Then V is recursively enumerable and f−1(A) =
⋃
η∈V Nη.

ii) Suppose A ⊆ N×X is Σ0
1. There is a recursively enumerable W ⊆ SN×X

such that A =
⋃
η∈W Nη. Let V = {ν ∈ SX : ∃n (n, ν) ∈ W}. Then V is

2We assume that if the computation makes any queries about numbers i ≥ |η|, then the
computation does not halt.
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recursively enumerable and

{x : ∃n (n, x) ∈ A} =
⋃

ν∈V

Nν .

iii) Suppose A and W are as in ii) and f : X → N is computable by program
Pe. Let V = {ν ∈ SX : ∃k Pe with oracle ν halts outputting k and (m, ν) ∈ W
for all m ≤ k}. Then V is recursively enumerable and

{x : ∀m < f(x) (m,x) ∈ A} =
⋃

ν∈V

Nν}.

Exercise 3.20 Give the inductive steps to complete the proof of 3.19

We can make two interesting observations about universal sets. We state
these results for Σ0

n, but the analogous results hold for Π0
n.

Proposition 3.21 i) There is U ⊆ N ×X a Σ0
n-set that is Σ

0
n-universal.

ii) There is V ⊆ N×X a Σ0
n-set that is Σ

0
n-universal.

Proof
i) Indeed the universal sets produced in 2.37 are Σ0

n. Fix f : N → SX a
recursive bijection. The set U1 = {(x, y) : ∃n (x(n) = 1∧ y ∈ Nf(n))} is Σ

0
1 and

Σ0
n-universal.
If U∗n ⊆ N × N×X is Σ0

n and Σ0
n-universal for N×X , then

Un+1 = {(x, y) : ∃n (x, n, y) 6∈ U∗n}

is Σ0
n+1 and Σ0

n-universal.

ii) Let V1 = {(n, x) : ∃m (φn(m) ↓ ∧x ∈ Nφn(m))}. Let g : N× N → SN×X
be partial recursive such that g(n,m) = (n, φn(m)), then

V1 =
⋃

n,m

Ng(n,m)

is Σ0
1 and Σ0

1-universal.
An induction as in i) extends this to all levels of the arithmetic hierarchy.

Corollary 3.22 For any X there is A ⊆ X such that A is Σ0
n but not ∆0

n.

Proof For X = Nk×N l where l > 0 this follows as in §2 using 3.21 i). Suppose
U ⊆ N × N is Σ0

n and universal Σ0
n. Let A = {m : (m,m) 6∈ U}. If U ∈ ∆0

n,
then A ∈ Σ0

n and A = {m : (i,m) ∈ U} for some i. Then

i ∈ A⇔ (i, i) 6∈ U ⇔ i 6∈ A,

a contradiction. Thus U ∈ Σ0
n \ ∆

0
n. Using a recursive bijection f : N2 → Nl,

shows that for all X = N l, there is a Σ0
n-set that is not ∆

0
n.

Let Γ be Π0
n, Σ

0
n or ∆0

n for i = 0 or 1. If A,B ⊆ N, B ∈ Γ and A ≤m B,
then A ∈ Γ.

We say that A ⊆ N is Γ-complete if A ∈ Γ and B ≤w A for all B ⊆ N in Γ.
Here are some well known examples from recursion theory.
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Fact 3.23 i) {e : dom (φe) 6= ∅} is Σ0
1-complete.

ii) {e : φe is total} is Π0
2-complete.

iii) {e : dom (φe) is infinite} is Π0
2-complete.

iv) If U ⊆ N× N is Γ-universal, then U is Γ-complete.

Exercise 3.24 Prove the statements in the last fact.

4 Analytic Sets

When studying the Borel sets, it is often useful to consider a larger class of sets.

Definition 4.1 Let X be a Polish space. We say that A ⊆ X is analytic if there
is a Polish space Y , f : Y → X continuous and B ∈ B(Y ) such that A = f(B)
the image of B. We let Σ1

1(X) denote the collection of all analytic subsets of
X .

If no confusion arises we write Σ1
1 rather than Σ1

1(X). The following lemma
gives several alternative characterizations of analytic sets. In general if X × Y
is a product space, we let πX and πY denote the projections onto X and Y .

Lemma 4.2 Let X be a Polish space. The following are equivalent:
i) A ∈ Σ1

1;
ii) either A = ∅ or there is f : N → X continuous such that f(N ) = X;
iii) there is B ⊆ N ×X closed, such that A = πX(B)
iv) there is a Polish space Y and B ⊆ Y ×X Borel such that A = πX (B).

Proof
i)⇒ ii) Since A ∈ Σ1

1, there is a Polish space Y , f : Y → X continuous, and
B ⊆ Y Borel such that f(B) = A. By 2.26 there is a continuous g : N → Y ,
such that g(N ) = B. Then f ◦g is a continuous map from N to X whose image
is A.

ii)⇒ iii) Suppose f : N → X is continuous and f(N ) = A. Let G(f) ⊆
N ×X be the graph of f . Then G(f) is closed and πX(G(f)) = A.

iii)⇒ iv) and iv) ⇒ i) are clear.

Exercise 4.3 a) Show that if A ∈ Σ1
1(X), then there is B ∈ Π0

2(C ×X) such
that π(B) = A.

b) Show that this cannot be improved to Σ0
2(C ×X).

Definition 4.4 Let X be a Polish space. We say that A ⊆ X is Π1
1(X) if X \A

is Σ1
1. Π

1
1(X)-sets are also called coanalytic.

We say A ⊆ X is in ∆1
1(X) if A ∈ Π1

1(X) ∩Σ1
1(X).

By 2.26 every Borel set is analytic. Since the complement of a Borel set
is analytic, every Borel set is ∆1

1. We will show below that there are analytic
sets that are not Borel. First we prove some of the basic closure properties of
analytic and coanalytic sets.
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Lemma 4.5 i) Σ1
1 and Π

1
1 are closed under countable unions and intersections.

ii) If f : X → Y is Borel measurable, and A ∈ Σ1
1(X), then f(A) ∈ Σ1

1(Y ).
iii) Σ1

1 and Π1
1 are closed under Borel measurable inverse images.

Proof
i) Suppose A0, A1, . . . ∈ Σ

1
1(X). Let Ci ∈ Π

0
1(N ×X) such that π(Ci) = Ai.

Then
⋃
Ai = π(

⋃
Ci) ∈ Σ1

1.
Using the homeomorphism between N and N N we can view f ∈ N as coding

(f0, f1, . . .) ∈ NN. Let

C = {(f, x) ∈ N ×X : ∀n (fn, x) ∈ Ci}.

Then C is a closed subset of N ×X and
⋂
Ai = π(C) ∈ Σ1

1.
Since Σ1

1 is closed under countable unions and intersections, so is Π1
1.

ii) If f : X → Y is Borel measurable, then, by 2.3 iii), G(f), the graph of f ,
is a Borel subset of X × Y . Suppose A ∈ Σ1

1(X), there is a closed C ⊆ N ×X
such that A = πX(C). Let

D = {(x, y, z) ∈ N ×X × Y : (x, y) ∈ C and (y, z) ∈ G(f)}.

Then D is Borel and f(A) = πY (D) ∈ Σ1
1(Y ).

iii) Suppose f : X → Y is Borel measurable, and G(f) is the graph of X . If
A ∈ Σ1

1(Y ), then

f−1(A) = {x : ∃y y ∈ A ∧ (x, y) ∈ G(f)}.

If C ⊆ N × Y is closed such that πY (X) = A, then

f−1(A) = πX({(x, y, z) ∈ N ×X×Y : (x, z) ∈ C and (y, z) ∈ G(f)}) ∈ Σ1
1(X).

If A ∈ Π1
1(Y ), then f−1(A) = X \ f−1(Y \A), so f−1(A) ∈ Π1

1(X).

Intuitively, Σ1
1(X) is closed under ∧, ∨, ∃n ∈ N, ∀n ∈ N and ∃x ∈ X . While

Π1
1(X) is closed under ∧, ∨, ∃n ∈ N, ∀n ∈ N and ∀x ∈ X .

Examples

Example 4.6 Let LO be as in 2.12 and let WO = {x ∈ LO : x is a well order}.
Then WO is Π1

1.

A linear order is a well order if and only if there are no infinite descending
chains. Thus

WO = {x ∈ LO : ∀f : N→ N ∃n x(f(n), f(n+ 1)) = 0}.

Example 4.7 Let Tr be TrN as in 2.13, codes for subsets of N<ω that are trees.
We say that T ∈ Tr is well-founded if [T ] = ∅. Let WF = {x ∈ Tr : x is well
founded}. Then WF is Π1

1.
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Let s : (N<ω)2 → 2 be such that s(σ, τ) = 1 if and only if σ ⊂ τ . Then

WF = {x ∈ Tr : ∀f (∀n x(f(n)) = 1→ ∃n s(f(n), f(n+ 1)) = 0}.

Example 4.8 Ism(L) = {(M0,M1) ∈ Mod(L) :M0
∼=M1} is a Σ1

1-equivalence
relation.

For notational simplicity, we consider only the case L = {R} where R is a binary
relation symbol, the general case is similar. Then

M0
∼=M1 ⇔ ∃f : N→ N ∀i, j ∈ N RM0(i, j)↔ RM1(f(i), f(j)).

Thus Ism(L) is a Σ1
1-equivalence relation.

By 2.17 every Ism(L) equivalence class is Borel.

Example 4.9 D(I) = {f ∈ C(I) : f is differentiable} is Π1
1(C(I)).

We saw in 2.18 that E = {(f, x) ∈ C(I) × I : f is differentiable at x} is Π0
3.

Thus D = {f : ∀x ∈ I (f, x) ∈ E} is Π1
1.

Example 4.10 If X is a Polish space, then {A ∈ K(X) : A is uncountable} is
Σ1

1.

An uncountable closed set contains a perfect set. In 2.19 and 2.21 we saw
that {(A,B) : A ⊆ B} and {P ∈ K(X) : P is perfect} are Borel. But A is
uncountable if and only if

∃P ∈ K(X) (P is perfect and P ⊆ A).

Thus the set of uncountable closed sets is Σ1
1.

Universal Σ1
1-sets

We now start to prove there is an analytic set that is not Borel.

Lemma 4.11 There is U ∈ Σ1
1(C ×X) that is Σ1

1-universal.

Proof By 2.37 there is a closed set V ⊆ C ×N ×X such that if A ⊆ N ×X is
closed then A = Va for some a ∈ C. Let U = {(a, x) ∈ N×N : ∃f ∈ N (a, f, x) ∈
V }. Since U is the projection of a closed set, U ∈ Σ1

1(X). If A ∈ Σ1
1(X), there

is a closed B ⊆ N ×X such that π(B) = A. There is a ∈ C such that Va = B.
Then Ua = A.

Corollary 4.12 If X is an uncountable Polish space, then there is A ∈ Σ1
1(X)

that is not Π1
1 and hence not Borel.
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Proof We first prove this for X = C. Let A = {a ∈ N : (a, a) 6∈ U}. If U ∈ Π1
1,

then A ∈ Σ1
1 and A = Ua for some a ∈ C. But then

a ∈ A⇔ a ∈ Ua ⇔ (a, a) ∈ U ⇔ a 6∈ A,

a contradiction.
If X is an uncountable Polish space, there is f : C → X be a Borel isomor-

phism. Let A ⊆ C be Σ1
1 but not Π1

1. By 4.5 ii) f(A) ∈ Σ1
1(X). By 4.5 iii), if

f(A) ∈ Π1
1(X), then A = f−1(f(A)) ∈ Π1

1, a contradiction.

The last proof illustrates an important point. Since any two uncountable
Polish spaces are Borel isomorphic, if we are trying to prove something about
Borel and analytic sets, it is often enough to prove it for one particular Polish
space (like N or C) and then deduce it for all Polish spaces.

The Separation Theorem

We noticed that every Borel set is ∆1
1. We will show that the converse is true,

proving Souslin’s Theorem that B(X) =∆1
1(X).

Theorem 4.13 (Σ1
1-Separation Theorem) Suppose X is a Polish space and

A,B ⊆ X are disjoint analytic sets. There is a Borel set C ⊆ X such that A ⊆ C
and B ∩ C = ∅.

Proof Let f, g : N → X be continuous functions such that f(N ) = A and
g(N ) = B. For σ ∈ N<ω let Aσ = f(Nσ) and Bσ = g(Nσ).

Let σ ∈ N<ω. Suppose for all i, j, there is Ci,j Borel such that Aσ
�

i ⊆ Ci,j
and Bσ

�

j ∩Ci,j = ∅. Then C =
⋃
i

⋂
j Ci,j is a Borel set separating Aσ and Bσ.

Suppose A and B can not be separated by a Borel set. Using the observation
above, we can inductively define ∅ = σ0 ⊂ σ1 ⊂ . . . and ∅ = τ0 ⊂ τ1 ⊂ . . . in
N<ω such that |σi| = |τi| = i and Aσi and Bτi can not be separated by a Borel
set. Let x =

⋃
σi and y =

⋃
τi. Then f(x) ∈ A and g(x) ∈ B. Let U and V

be disjoint open sets such that f(x) ∈ U and g(x) ∈ V . By continuity, there
is an n such that f(Nx|n) ⊆ U and g(Ny|n) ⊆ V , but x|n = σn, y|n = τn, so,
Aσn = f(Nx|n) and Bτn = g(Ny|n) are Borel separable, a contradiction.

Corollary 4.14 If A ∈ ∆1
1(X), then A is Borel. Thus B(X) =∆1

1(X).

Proof Since A and X \A are disjoint Σ1
1-sets. They are separated by a Borel

set. The only set separating A and X \A is A.

We can now prove the converse to 2.3 iii).

Corollary 4.15 Suppose X and Y are Polish spaces and f : X → Y . The
following are equivalent:

i) f is Borel measurable;
ii) the graph of f is a Borel subset of X × Y ;
iii) the graph of f is an analytic subset of X × Y .
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Proof i) ⇒ ii) is 2.3 iii), and ii) ⇒ iii) is obvious.
Suppose the graph of f is analytic and A ∈ B(Y ), then

x ∈ f−1(A) ⇔ ∃y (y ∈ A ∧ f(x) = y)

⇔ ∀y (f(x) = y → y ∈ A).

These are Σ1
1 and Π1

1, definitions of f
−1(A), so f−1(A) is Borel.

The Perfect Set Theorem

Next we will show that the Perfect Set Theorem is still true for analytic sets.
We need one preparatory lemma.

Lemma 4.16 Let X be a Polish space. If A ⊆ X is uncountable, then there
are disjoint open sets U0 and U1 such that Ui ∩ A is uncountable for i = 0, 1.

Proof Suppose not. For each n > 1 let Un,0, Un,1, . . . be an open cover of X
by open balls of radius 1

n
. Choose x(n) such that Un,x(n) ∩ A is uncountable.

Let An = A \ Un,x(n). If An is uncountable we can find an open set V disjoint
from Un,x(n) such that V ∩ A is uncountable, thus An is uncountable. But

A \ (
⋃

n

An) =
⋂

n

Un,

since diam (Un)→ 0, there is at most one element in A \ (
⋃
nAn) and hence A

is countable, a contradiction.

Theorem 4.17 (Perfect Set Theorem of Σ1
1-sets) If X is a Polish space

and A ⊆ X is analytic and uncountable, then X contains a perfect set.

Proof Let f : N → X be a continuous function with f(N ) = X . We build a
function σ 7→ τσ from 2<ω to N<ω such that:

i) τ∅ = ∅;
ii) if σ0 ⊂ σ1, then τσ0 ⊂ τσ1 ;
iii) f(Nτσ) is uncountable for all σ ∈ 2<ω.
iv) f(Nτσ � 0

) ∩ f(Nτσ � 1
) = ∅ for all σ.

Let τ∅ = ∅. Suppose we have τσ such that f(Nτσ) is uncountable.

Claim Suppose V ⊆ N is open and f(V ) is uncountable. There are W1 and
W2 disjoint open subsets of V such that f(Wi) is uncountable for i = 0, 1.

By the preceeding lemma there are U0 and U1 disjoint open subsets of X
such that f(V )∩Ui is uncountable for i = 0, 1. Let Wi = f−1(Ui)∩ V . Clearly
W0 ∩W1 = ∅ and f(Wi) is uncountable.

Thus given τσ with f(Nτσ) uncountable, there are τσ
�

0, τσ
�

1 ⊃ τσ such that
Nτσ � 0

∩Nτσ � 1
= ∅ and f(Nτσ � i

) is uncountable.
Let g : C → N by g(x) =

⋃
n τx|n. Then g is continuous and f ◦ g : C → X

is one-to-one. Since C is compact, f ◦ g(C) is closed and uncountable and hence
contains a perfect set.
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A little extra care would allow us to conclude that f ◦ g(C) is perfect. We
will give a second proof of this theorem in §6.

The Perfect Set Theorem forΣ1
1-sets is the best result of this kind that we can

prove in ZFC. The next natural question is whether the Perfect Set Theorem is
true for Π1

1-sets. Unfortunately, this depends on set theoretic assumptions. Let
L be Gödel’s constructible universe. If x ⊆ N, let L(x) be the sets constructible
from x.

Theorem 4.18 (Mansfield, Solovay) The following are equivalent:
i) every uncountable Π1

1-set contains a perfect subset;

ii) for all x ⊆ N, ℵ
L(x)
1 is countable;

iii) ℵV
1 is an inaccessible cardinal in L.

In particular if V = L, then there is Π1
1-set with no perfect subset. For

proofs see [9] §41.

Baire Property

We will show that analytic sets have the Baire Property.
We begin by giving another normal form for Σ1

1-sets. Let X be a Polish
space.

Definition 4.19 Suppose Bσ ⊆ X for all σ ∈ N<ω. We define

A({Bσ}) =
⋃

f∈N

⋂

n∈N
Bσ.

We call A the Souslin operation..

Exercise 4.20 a) Suppose Bσ is closed for all σ ∈ N<ω. Show that A({Bσ})
is Σ1

1.
b) Suppose A is analytic and f : N → X is continuous such that f(N ) = A.

Let Bσ = f(Nσ). Show that f(x) =
⋂
nBx|n and A = A({Bσ}).

Thus A is analytic if and only if A = A({Bσ}) for some family of closed
sets.

We will assume that X is a topological space with a countable basis. Al-
though we are primarily interested in Polish spaces. We will use the next two
lemmas in a more general setting in §8.

Lemma 4.21 Suppose A ⊆ X. There is B ⊇ A such that B has the Baire
Property and if B′ ⊇ A has the Baire Property, then B \B ′ is meager.

Proof Let U0, U1, . . . be a basis for the topology on X . Let

A1 = {x ∈ X : ∀i if x ∈ Ui, then Ui ∩A is not meager}.

If x 6∈ A1, there is an i such that x ∈ Ui and Ui ∩ A is meager. If y ∈ Ui, then,
since Ui ∩ A is meager, y 6∈ A1. Thus Ui ∩ A1 = ∅ and A1 is closed.
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Then
A \A1 =

⋃
{A ∩ Ui : A ∩ Ui is meager},

a meager set. Let B = A∪A1. Since B = A1 ∪ (A \A1) is the union of a closed
set and a meager set, B has the Baire Property.

Suppose B′ ⊇ A has Baire Property, then C = B\B ′ has the Baire Property.
We must show that C is meager. If not then Ui \C is meager for some i. Then
Ui ∩ A is meager. Since Ui ∩ C 6= ∅ and C ⊆ A1, there is x ∈ Ui such that
x ∈ A1. Thus Ui ∩ A is not meager, a contradiction.

Theorem 4.22 Suppose Aσ has the Baire Property for all σ ∈ N<ω. Then
A = A({Aσ}) has the Baire Property.

Proof We may assume that Aσ ⊆ Aτ for τ ⊆ σ; otherwise replace Aσ by⋂
τ⊆σ Aτ . For σ ∈ N<ω let

Aσ =
⋃

x⊃σ

⋂

n∈N
Ax|n ⊆ Aσ.

By 4.21 there is Bσ ⊇ Aσ with the Baire Property such that if B ⊇ Aσ has the
Baire Property, then Bσ \B is meager. We may assume that Bσ ⊆ Aσ and that
Bσ ⊆ Bτ for τ ⊆ σ, replacing Bσ by

⋂
τ⊆σ B

τ if necessary.

Let Cσ = Bσ \
⋃
nB

σ
�

n. Since Aσ ⊆
⋃
nB

σ
�

n, our choice of Bσs insures
that Cσ is meager. Let C =

⋃
σ∈N<ω Cσ. Clearly C is meager.

Claim B∅ \ C ⊆ A.
Let b ∈ B∅ \C. Since b 6∈ C∅, there is x(0), such that b ∈ Bx(0). Suppose we

have x(0), . . . , x(n) such that b ∈ Bx(0),...,x(n). Since b 6∈ Cx(0),...,x(n), there is

x(n+1) such that b ∈ Bx(0),...,x(n+1). Continuing this way we construct x ∈ N
such that

b ∈
⋂

n

Bx|n ⊆
⋂

n

Ax|n ⊆ A.

Thus b ∈ A.

Then B∅ \A ⊆ C. Hence B∅ \A is meager. In particular Bσ \A, and hence
A, have the Baire Property.

Corollary 4.23 If X is a Polish space, then every Σ1
1-set has the Baire Prop-

erty.

In §8 it will be useful to notice that our proof that the collection of sets with
the Baire Property is closed under the Souslin operator works in any topological
space with a countable basis (not just Polish spaces).

Exercise 4.24 a) Prove that if A ⊆ Rn, then there is B ⊇ A such that if B′ ⊆ A
is Lebesgue measurable, then B \ B′ has measure zero. [Hint: If µ∗(A) < ∞,
choose B ⊇ A measurable with µ(B) = µ∗(A), where µ∗ is Lebesgue outer
measure. Otherwise write A as a union of sets with finite outer measure.]

b) Modify the proof of 4.22, using a), to prove the following theorem.
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Theorem 4.25 The collection of Lebesgue measurable subsets of Rn is closed
under the Souslin operator. In particular every Σ1

1-set is Lebesgue measurable.

We give another restatement.

Definition 4.26 Let C be the smallest σ-algebra containing the Borel sets and
closed under the Souslin operator A.

We have proved that every C-measurable set is Lebesgue measurable.

The Projective Hierarchy

The analytic and coanalytic sets form the first level of another hierarchy of
subsets of a Polish space.

Definition 4.27 Let X be a Polish space. We say that A ⊆ X is Σ1
n+1(X) if

there is B ∈ Π1
n(X ×X) such that A = πX(B). We say that A ⊆ X is Π1

n(X)
if X ⊆ A is Σ1

n. We let ∆1
n(X) = Σ1

n(X) ∩Π1
n(X).

We say that A ⊂ X is projective if it is Σ1
n for some n.

Exercise 4.28 a) Prove that Σ1
n is closed under countable unions, countable

intersections, Borel measurable inverse images, and Borel measurable inverse
images.

b) Show that for each n there is Un ∈ Σ
1
n(C × C) that is Σ

1
n-universal.

c) Show that if X is an uncountable Polish space, then for all n there is a
Σ1
n set that is not Π1

n.
Thus we have the following picture of the projective hierarchy.
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©©

©©
©©

©©
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©©
©©
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©©
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...

∆1
1

Σ1
1 Π1

1

∆1
2

Σ1
2 Π1

2

We give several examples of higher level projective sets.

Example 4.29 Let MV = {f ∈ C(I) : f satisfies the mean value theorem}.
Then MV is Π1

2.

f ∈MV if and only if

∀x∀y
(
x < y → ∃z

(
f is differentiable at z and f ′(z) =

f(x)− f(y)

x− y

))

Two interesting example arise when studying L. See [9] §41.
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Example 4.30 The set {x ∈ N : x ∈ L} is Σ1
2.

The idea of the proof is that there is a sentence Θ such that ZF ` Θ and L

is absolute for transitive models of Θ. Using the Mostowski collapse
x ∈ L if and only if there isM a countable well-founded model of Θ+V = L

with x ∈ M.
This is a Σ1

2 definition of N ∩ L.

Example 4.31 If V = L, then there is a ∆1
2 well-order of N of order type ω1.

Indeed the canonical well-ordering of L is ∆1
2.

These example can be used to show that projective sets need not have nice
regularity properties. We will use Fubini’s Theorem, that a measurable A ⊆ R2

has positive measure if and only if {a : {b : (a, b) ∈ A} has positive measure}
has positive measure.

Lemma 4.32 If R is a well-ordering of R of order type ω1, then R is not
Lebesgue measurable.

Proof Suppose R is Lebesgue measurable. We consider For each x ∈ [0, 1],
Rx = {y : yRx} is countable and hence measure zero. By Fubini’s Theorem,
R has measure zero. We now exchange the order of integration. For each x,
Rx = {y : xRy} has a measure zero complement. Thus, by Fubini’s Theorem,
R has a measure zero complement, a contradiction.

Corollary 4.33 If V = L, then there is a nonmeasurable ∆1
2-set.

Fubini’s Theorem has a category analog.
Let X be a Polish space and suppose A ⊆ X ×X . For x ∈ X let Ax = {y ∈

X : (x, y) ∈ A}.

Theorem 4.34 (Kuratowski-Ulam Theorem) If A has the Baire property,
then A is nonmeager if and only if {a ∈ X : Aa is nonmeager} is nonmeager.

For a proof see [6] 8.41.

Exercise 4.35 Show that if V = L, then there is a ∆1
2-set that does not have

the Baire property.

On the other hand we (probably) can’t prove in ZFC that there is a projective
set where any of the regularity properties above fail.

Theorem 4.36 (Solovay) If ZFC + ∃κ κ inaccessible is consistent then so
is ZFC + every uncountable projective set contains a perfect subset + every
projective set is Lebesgue measurable and has the property of Baire.

See [9] §42 for Solovay’s proof. The same arguments also show that if ZFC
+ ∃κ κ inaccessible is consistent, then so is ZF+every set of reals is Lebesgue
measurable and has the Baire property.

By 4.18 the consistency of an inaccessible is needed to prove the consistency
of every uncountable Π1

1-set containing a perfect subset. Shelah has shown that
it is also needed to prove the consistency of all projective sets being measurable,
but not to prove the consistency of all projective sets having the Baire property.
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The Effective Projective Hierarchy

We also have effective analogs of the projective point classes. Let X = Nk ×N l

for some k, l ∈ N.

Definition 4.37 We say that A ⊆ X is Σ1
1 if there is a B ⊆ N ×X such that

B ∈ Π0
1 and A = {x : ∃y (y, x) ∈ B}.

We say A ⊆ X is Π1
n if X \A is Σ1

n and we say that A ⊆ X is Σ1
n+1 if there

is a B ⊆ N ×X with B ∈ Π1
n such that A = {x : ∃y (y, x) ∈ B}.

We say A is ∆1
n if it is both Σ1

n and Π1
n.

The next theorem summarizes a number of important properties of the
classes Σ1

n and Π1
n. We leave the proofs as exercises.

Theorem 4.38 i) The classes Σ1
n and Π1

n are closed under union, intersection,
∃n ∈ N, ∀n ∈ N and computable inverse images.

ii) If A ⊆ X ×N is arithmetic, then {x : ∃y(x, y) ∈ A} is Σ1
n.

iii) There is U ⊆ N ×X a Σ1
n-set that is Σ

1
n-universal.

iv) There is V ⊆ N×X a Σ1
n-set that is Σ

1
n-universal.

v) Σ1
n ⊂ ∆1

n+1, but Σ
1
n 6= ∆1

n.
vi) The set WF of wellfounded trees is Π1

1.

Exercise 4.39 Prove 4.38.

5 Coanalytic Sets

In this section we will study the structure of Π1
1-sets. Because any two un-

countable Polish spaces are Borel isomorphic, it will be no loss of generality to
restrict our attention to the Baire space.

We begin by giving a normal form for Σ1
1 and Π1

1-sets.

Definition 5.1 We say that T ⊆ N<ω × N<ω is a tree if:
i) |σ| = |τ | for all (σ, τ) ∈ T ;
ii) if (σ, τ) ∈ T and n ≤ |σ|, then (σ|n, τ |n) ∈ T .

If f, g ∈ N we say that (f, g) is a path through T if (f |n, g|n) ∈ T for all
n ∈ N. We let [T ] be the set of all paths through T .

Exercise 5.2 Show that F ⊆ N × N is closed if and only if there is a tree
T ⊆ N<ω × N<ω such that F = [T ].

If A ⊆ N is Σ1
1, then there is C ⊆ N × N closed such that A = {x :

∃y (x, y) ∈ A}. Let T be a tree such that [T ] = C. For each x ∈ N , let

T (x) = {σ ∈ N<ω : (x|n, σ) ∈ T for some n}.

Then T (x) is a tree and x ∈ A if and only if there is f ∈ [T (x)]. Let Tr be as
in 2.13.3 Then x 7→ T (x) is a continuous map from N to Tr and x ∈ A if and
only if T (x) is ill-founded (i.e., not well-founded).

3Although Tr was defined to be a subset of 2
� <ω

, we will (by suitable coding) view it as
a subset of C or N .

43



Let IF be the set of ill-founded trees. We saw in §3 that WF the set of well-
founded trees is Π1

1, thus IF is Σ1
1. We have just argued that IF is Σ1

1-complete.
In particular, IF is Σ1

1 but not Borel.
If A is Π1

1, then (N \A) ≤w IF, so A ≤w WF. We summarize these results
in the following theorem.

Theorem 5.3 (Normal form for Π1
1) If A ⊆ N is Π1

1, then there is a tree
T ⊆ N<ω × N<ω such that x ∈ A if and only if T (x) ∈WF.

Corollary 5.4 If A ∈ Π1
1, then there is f : N → Tr continuous such that

A = f−1(WF). In otherwords, WF is Π1
1-complete. In particular WF is not

Σ1
1.

Ranks of Trees

Our analysis of Π1
1-sets starts with an analysis of trees.

Definition 5.5 If T is a tree, let T ′ = {σ ∈ T : ∃τ ∈ T σ ⊂ τ} be the subtree
of nonterminal nodes of T . For α < ω1 define Tα as follows:

i) T 0 = T ;
ii) Tα+1 = (Tα)′;
iii) Tα =

⋂
β<α T

β for α a limit.

Lemma 5.6 For any tree T there is an α < ω1, such that Tα = T β for all
β > α.

Proof Clearly if Tα = Tα+1, then Tα = T β for all β > α. If Tα 6= Tα+1 there
is σα ∈ Tα \Tα+1. If α 6= β, then σα 6= σβ . Thus, since N<ω is countable, there
is α < ω1 such that Tα = Tα+1.

Definition 5.7 If T ⊆ N<ω is a tree, we define a rank ρT : T → ω1 ∪ {∞}, by
i) if σ ∈ Tα \ Tα+1, then ρT (σ) = α.
ii) if σ ∈

⋂
α<ω1

Tα, then ρT (σ) =∞.
If T = ∅ let ρ(T ) = −1, otherwise let ρ(T ) = sup{ρT (σ) : σ ∈ T}.

In general, ρ(T ) is the least α such that T α+1 = ∅, if there is such an α.
When no confusion arises we drop the subscript T .

Lemma 5.8 Let T ⊆ N<ω be a tree and let ρ be the rank of T .
i) Suppose σ, τ ∈ T and σ ⊂ τ . If ρ(τ) = ∞, then ρ(σ) = ∞. If ρ(τ) < ∞,

then ρ(σ) > ρ(τ).
ii) If σ ∈ T and ρ(τ) <∞ for all τ ∈ T with σ ⊂ τ , then

ρ(σ) = sup{ρ(σ î) + 1 : σ î ∈ T}.

iii) If ρ(σ) =∞, then there is f ∈ [T ] ∩Nσ;
iv) T is well-founded if and only if ρ(T ) <∞.

44



Proof
i) If σ ⊂ τ and τ ∈ Tα, then σ ∈ Tα+1.
ii) By i) ρ(σ) ≥ sup{ρ(σ î) + 1 : σ î ∈ T}. On the other hand if α =

sup{ρ(σ î) + 1 : σ î ∈ T}, then σ has no extensions in Tα so σ 6∈ Tα+1. Thus
ρ(σ) = sup{ρ(σ î) + 1 : σ î ∈ T}.

iii) If ρ(σ) = ∞, then by ii) there is σ î ∈ T with ρ(σ î) = ∞. This allows
us to inductively build f ∈ [T ] with f ⊃ σ.

iv) Clear from i)–iii).

Exercise 5.9 a) Show that if T 6= ∅, then ρ(T ) = ρT (∅).
b) Show that for all α < ω1 there is a tree T with ρ(T ) = α.
c) If T is a tree and σ ∈ N<ω, let Tσ = {τ ∈ N<ω : σ τ̂ ∈ T}. Show that Tσ

is a tree and if T 6= ∅, then ρ(T ) = supn∈N(ρ(T〈n〉) + 1).

Definition 5.10 If S and T are trees we say that f : S → T is order-preserving
if f(σ) ⊂ f(τ) for all σ, τ ∈ T with σ ⊂ τ .

Lemma 5.11 i) If S, T ⊆ N<ω are trees, then ρ(S) ≤ ρ(T ) if and only if there
is an order preserving f : S → T .

ii) If T is a well-founded tree, then ρ(S) < ρ(T ) if and only if S = ∅ and
T 6= ∅ or there is n ∈ N and f : S → T〈n〉 order preserving.

Proof
i) If f : S → T is order preserving, then an easy induction on rank shows

that ρS(σ) ≤ ρT (f(σ)) for all σ ∈ S. Thus ρ(S) ≤ ρ(T ). For the converse, we
build f by induction such that ρS(σ) ≤ ρT (f(σ)) for all σ ∈ S. Let f(∅) = ∅.
Suppose we have defined f(σ) with ρS(σ) ≤ ρT (f(σ)) and σ î ∈ T . By 5.8 ii)
and iii) there is j ∈ N such that f(σ)̂ j ∈ T and ρT (f(σ)̂ j) ≥ ρS(σ î). Let
f(σ î) = f(σ)̂ j.

ii) If f : S → T〈n〉 is order preserving. Then

ρ(S) ≤ ρ(T〈n〉) = ρT (〈n〉) < ρT (∅) = ρ(T ).

Conversely, if ρ(S) < ρ(T ) and S 6= ∅, then there is n ∈ N such that ρ(S) ≤
ρ(T〈n〉) and by i) there is an order-preserving f : S → T〈n〉.

If α < ω1, let WFα = {T ∈ WF : ρ(T ) < α}. We will show that WFα is
Borel.

Lemma 5.12 WFα is Borel.

Proof We prove this by induction on α. WF0 = {∅}. For all α

WFα+1 =
⋂

n∈N
{T : 〈n〉 6∈ T or T〈n〉 ∈WFα}.

Since T 7→ T〈n〉 is continuous, by induction, WFα is Borel. If α is a limit ordinal,
then WFα =

⋃
β<αWFβ . Thus WFα is Borel.
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Ranks of Π1
1 sets

We can now see how Π1
1-sets are built up from Borel sets.

Theorem 5.13 If A ∈ Π1
1, then A is the union of ℵ1-Borel sets.

Proof Suppose f : N → Tr such that x ∈ A if and only if f(x) ∈WF. Then

A =
⋃

α<ω1

f−1(WFα) and each f−1(WFα) is Borel.

This allows us to say something about the cardinality of Π1
1-sets.

Corollary 5.14 If A ∈ Π1
1 and |A| > ℵ1, then A contains a perfect set. In

particular, |A| ≤ ℵ1 or |A| = 2ℵ0 .

Proof Let A =
⋃
α<ω1

Aα where Aα is Borel. If any Aα is uncountable, then
A contains a perfect set. Otherwise |A| ≤ ℵ1.

It is consistent with ZFC that there is aΠ1
1-set that has cardinality ℵ1 < 2ℵ0 .

For example, this is true in any model of ZFC where ℵL
1 = ℵV

1 < 2ℵ0 .

We next examine the complexity of comparing ranks.

Lemma 5.15 i) The set {(S, T ) : ρ(S) ≤ ρ(T )} is Σ1
1.

ii) There is R ∈ Σ1
1(N ×N ) such that if T ∈WF, then {S : (S, T ) ∈ R} =

{S : ρ(S) < ρ(T )}.

Proof
i)

ρ(S) ≤ ρ(T ) if and only ∃f : S → T order-preserving.

ii) For T ∈WF,

ρ(S) < ρ(T ) if and only if S = ∅ and T 6= ∅ or ∃n ∈ N ∃f : S → T〈n〉 order-preserving.

Both of these definitions are Σ1
1.

Corollary 5.16 (Σ1
1-Bounding) Suppose A ⊆WF is Σ1

1. Then there is α <
ω1 such that A ⊆WFα.

Proof Suppose not. Then

T ∈WF⇔ ∃S (S ∈ A ∧ ρ(T ) ≤ ρ(S)}

and WF is Σ1
1, a contradiction.

Σ1
1-Bounding gives us a different proof that ∆1

1-sets are Borel. Suppose A
is ∆1

1. Since A is Π1
1 there is a tree T ⊆ N<ω × N<ω such that x ∈ A if and

only if T (x) ∈WF. Since A is Σ1
1, the set {T (x) : x ∈ A} is a Σ

1
1 subset of WF.

By Σ1
1-Bounding there is α < ω1 such that T (x) ∈ WFα for all x ∈ A. Thus

A ≤w WFα is Borel.
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We will recast the work we just did in more modern language introduced by
Moschovakis. This point of view is useful when one attempts to extend these
ideas to higher levels of the projective hierarchy.

Definition 5.17 A norm on a set A is a function φ : A→ On where On is the
class of ordinals.

Suppose A ∈ Π1
1. We say that φ : A → On is a Π1

1-norm if there are

relations ≤
Π

1
1

φ ∈ Π
1
1(N ×N ) and ≤

Σ
1
1

φ ∈ Σ
1
1(N ×N ) such that if y ∈ A, then

x ∈ A ∧ φ(x) ≤ φ(y) ⇔ x ≤
Π

1
1

φ y

⇔ x ≤
Σ

1
1

φ y.

If A is Π1
1 and f : N → Tr is continuous, let φ = ρ ◦ f .

Exercise 5.18 a) Show that φ is a Π1
1-norm on A.

For all α < ω1, let Aα = {x : ρ(x) < α}.
b) Suppose B ⊆ Aα is Σ1

1. Show that B ⊆ Aα for some α.
c) Show that A is Borel if and only if A = Aα for all suitably large α.

Reduction and Separation

The following structural property ofΠ1
1-sets is a strong form of theΣ1

1-separation
property.

Definition 5.19 A class of sets Γ has the reduction property if whenever A,B ∈
Γ there are A0 ⊆ A and B0 ⊆ B such that A0, B0 ∈ Γ, A0 ∩ B0 = ∅ and
A0 ∪B0 = A ∪ B.

Theorem 5.20 Π1
1 has the reduction property.

Proof Suppose A,B ∈ Π1
1. Let f, g : N → Tr be continuous such that

A = f−1(WF ) and B = g−1(WF ).
Let A0 = {x ∈ A : ρ(f(x)) ≤ ρ(g(x))} and let B0 = {x ∈ B : ρ(g(x)) <

ρ(f(x))}. It is easy to see that A0 ⊆ A, B0 ⊆ B, A0 ∩ B0 = ∅, and A0 ∪ B0 =
A ∪ B. Notice that

x ∈ A0 if and only if x ∈ A ∧ ¬(ρ(g(x)) < ρ(f(x)))

and
x ∈ B0 if and only if ¬(ρ(f(x)) ≤ ρ(g(x))).

By 5.15 A0 and B0 are Π1
1.

Definition 5.21 We say that Γ has the separation property if whenever A,B ∈
Γ and A ∩ B = ∅ there is C ∈ Γ ∩ Γ̌ such that A ⊆ C and C ∩ B = ∅.

Lemma 5.22 If Γ̌ has the reduction property, then Γ has the separation prop-
erty.
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Proof Suppose A,B ∈ Γ and A ∩ B = ∅. Then X \ A, X \ B ∈ Γ̌ and
X \A∪X \B = X . Let C ⊆ X \B, D ⊆ X \A such that C,D ∈ Γ̌, C ∩D = ∅
and C∪D = X . Then C = X \D so C ∈ Γ. If x ∈ A, then x ∈ (X \B)\(X \A).
Thus x ∈ C. Similarly if x ∈ B, then x ∈ D = X \ C. Thus C separates A and
B.

This gives a different proof that Σ1
1 has the separation property. We next

show that it is harder to separate Π1
1-sets.

Proposition 5.23 Π1
1 does not have the separation property.

Proof Let U ⊆ N ×N be a universal Π1
1-set. If x ∈ N we think of x as coding

〈x0, x1〉 ∈ N
2. Let P = {x : 〈x0, x〉 ∈ U} and let Q = {x : 〈x1, x〉 ∈ U}. By

reduction we can find P0 andQ0 ∈ Π1
1 such that P0∩Q0 = ∅ and P0∪Q0 = P∪Q.

Suppose, for contradiction, that C is a Borel set with P0 ⊆ C and P0 ∩ C = ∅.
Suppose C = Ua and N \ C = Ub. Let x = 〈b, a〉.

Suppose x ∈ C, then (a, x) ∈ U and, by the definition of Q, x ∈ Q. The only
elements of Q that are in C are also in P . Thus x ∈ P . Using the definition of
P , (b, x) ∈ U . Thus x 6∈ C.

Similarly

x 6∈ C ⇒ (b, x) ∈ U ⇒ x ∈ P ⇒ x ∈ Q⇒ (a, x) ∈ U ⇒ x ∈ C

a contradiction.

Uniformization

Definition 5.24 Suppose A ⊆ X × Y . We say that B ⊆ A uniformizes A if
and only if

i) πX (A) = πX (B), and
ii) for all x ∈ πX(A) there is a unique b ∈ Y such that (x, b) ∈ B.

In other words, B is the graph of a function f : πX (A) → Y such that
(x, f(x)) ∈ A for all x ∈ πX(A).

The Axiom of Choice tells us that for every A ⊆ X × Y , there is B ⊆ A
uniformizing A. We will be interested in trying to understand how complicated
B is relative to A.

Definition 5.25 We say that Γ has the uniformization property if for all A ∈
Γ(N ×N ), there is B ∈ Γ a uniformization of A.

We first show that uniformization can be difficult.

Proposition 5.26 There is a closed set C ⊆ N×N that can not be uniformized
by a Σ1

1-set.

48



Proof By 5.23 there are Π1
1-sets A0, A1 ⊆ N such that A0 ∩A1 = ∅ but there

is no Borel set B with A0 ⊆ B and A1 ∩ B = ∅.
There are closed sets C0, C1 ⊆ N such that

X \Ai = {x : ∃y (x, y) ∈ Ci}.

Without loss of generality we can take Ci ⊆ N×N〈i〉. Let C = C0∪C1. Suppose
B ∈ Σ1

1 uniformizes C. Then B is the graph of a function f : N → C, and,
by 4.15 f is Borel measurable. Let Bi = f−1(N × N〈i〉). Then each Bi is a
Borel set and B0 ∩ B1 = ∅. If x ∈ Ai, then x ∈ B1−i. Thus B1 is a Borel set
separating A0 and A1, a contradiction.

While Borel sets can not be uniformized by Borel sets, or even Σ1
1-sets, we

will prove that any Π1
1-set can be uniformized by a Π1

1-set. As a warm-up we
first prove a uniformization theorem for Π1

1-subsets of N × N.

Theorem 5.27 (Kriesel’s Uniformization Theorem) Every Π1
1 subset of

N × N can be uniformized by a Π1
1-set.

Proof Let A ⊆ X ×N be Π1
1 and let f : X ×N→ Tr be continuous such that

x ∈ A if and only if f(x) ∈WF. Let

B = {(x, n) ∈ A : ∀m ∈ N ρ(f((x,m)) 6< ρ(f(x, n)) and

∀m < n ρ(f(x,m)) 6≤ ρ(f(x, n))}.

Then B is Π1
1 and (x, n) ∈ B if and only if (x, n) ∈ A, ρ(x, n) = infm ρ(x,m)

and for all m < n, ρ(x,m) > ρ(x, n). Clearly for all x ∈ π(A) there is a unique
n such that (x, n) ∈ B. Thus B uniformizes A.

We can do even better if π(A) is Borel.

Corollary 5.28 (Selection) Suppose A ⊆ X × N is Π1
1 and π(A) is Borel.

Then A has a Borel-uniformization.

Proof Let B be a Π1
1-uniformization of A. Then

(x, n) 6∈ B ⇔ ∃m ∈ N (m 6= n ∧ (x,m) ∈ B).

This is a Π1
1-definition of X \B. Thus B is Borel.

Theorem 5.29 (Kondo’s Theorem) Π1
1 has the uniformization property.

Proof Let A ⊆ N ×N by Π1
1. There is a tree T on N<ω × N<ω × N<ω such

that A = {(x, y) : T (x, y) ∈ WF}. Fix σ0, σ1, . . . an enumeration of N<ω. We
may assume that such that σ0 = ∅, |σi| ≤ i, and if σi ⊂ σj , then i < j.

We build a sequence of Π1
1-sets A = A0 ⊇ A1 ⊇ A2 ⊇ . . . such that (x, y) ∈

An+1 if and only if
i) (x, y) ∈ An;
ii) if (x, z) ∈ An, then y(n) ≤ z(n);
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iii) if (x, z) ∈ An and z(n) = y(n), then ρ(T (x, y)σn) ≤ ρ(T (x, z)σn).

In other words, we first find mx,n minimal such that there is a z with (x, z) ∈
An and z(n) = mx,n, we then find αx,n minimal such that there is (x, z) ∈ An
with z(n) = mx,n and ρ(T (x, z)σn) = αx,n. Then (x, y) ∈ An+1 if and only if
(x, y) ∈ An, y(n) = mx,n and ρ(T (x, y)σn) = αx,n.

Let B =
⋂
nAn. We will show that B is a Π1

1-uniformization of A. Let π
be the projection (x, y) 7→ x. If x ∈ π(A), then, by induction, x ∈ π(An) for all
n. Define yx ∈ N by yx(n) = mx,n.

Claim 1 If (x, y) ∈ B, then y = yx.
If (x, y) ∈ An, y(n) = mx,n, thus y = yx.

We need to show that (x, yx) ∈ B for all x ∈ π(A). Fix x ∈ π(A).

Claim 2 Suppose σi, σj ∈ T (x, yx) and σi ⊂ σj . Then αx,j < αx,i.
Choose (x, z) ∈ Aj+1. Since i < j, (x, z) ∈ Ai+1. Since z|j+1 = y|j+1 and

|σj | ≤ j, σj ∈ T (x, z). Thus

αx,i = ρ(T (x, z)σi) > ρ(T (x, z)σj ) = αx,j ,

as desired.

Claim 3 (x, yx) ∈ A.
If σi0 ⊂ σi1 ⊂ . . . is an infinite path through T (x, yx), then, by claim 2,

αx,1 > αx,2 > . . . a contradiction. Thus T (x, yx) is well founded and (x, yx) ∈ A.

Claim 4 (x, yx) ∈ B.
An induction on T (x, yx) shows that if σn ∈ T (x, yx), then ρ(T (x, yx)σn) ≤

αx,n. By choice of αx,n, we have ρ(T (x, yx)σn) = αx,n and (x, yx) ∈ An for all
n.

Thus B is the graph of a function uniformizing A.

Claim 5 B is Π1
1.

Define R(x, y, n) by
∃z[(∀k < n (y(k) = z(k) ∧ ρ(T (x, y)σk ) = ρ(T (x, z)σk))∧

(z(n) < y(n) ∨ (z(n) = y(n) ∧ ρ(T (x, z)σn) < ρ(T (x, y)σn).
By 5.15 R is Σ1

1. Suppose (x, y) ∈ An. If (x, y) 6∈ An+1, then either y(n) 6= mx,n

or ρ(T (x, y)σn) 6= αx,n. In either case R(x, y, n) holds. On the other hand,
suppose R(x, y, n) and z witnesses the existential quantifier. Since (x, y) ∈ An,
(x, z) ∈ An. It is easy to see that either y(n) 6= mx,n or ρ(T (x, y)σn) 6= αx,n.
Thus (x, y) 6∈ An+1. Thus

(x, y) ∈ B ↔ (x, y) ∈ A ∧ ∀n ¬R(x, y, n)

and B is Π1
1.

Corollary 5.30 Σ1
2 has the uniformization property.

Proof Suppose A ⊆ N × N is Σ1
2. There is a Π1

1-set B ⊆ N
3 such that

A = {(x, y) : ∃z (x, y, z) ∈ B}. By Kondo’s Theorem, there is a Π1
1-set B̂ ⊆ B

such that

π(A) = {x : ∃y∃z (x, y, z) ∈ B} = {x : ∃y∃z (x, y, z) ∈ B̂}
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and for all x ∈ π(A) there is a unique pair (y, z) such that (x, y, z) ∈ B̂. Let

Â = {(x, y) : ∃z (x, y, z) ∈ B̂}. Then π(Â) = π(A) and for all x ∈ π(A) there is

a unique y such that (x, y) ∈ B̂.

Exercise 5.31 a) Show that Σ1
2 has the reduction property.

b) Show that Π1
2 does not have the uniformization property.

c) Suppose there is a ∆1
2 well-order of N . Show that Σ1

n-uniformization
holds for all n ≥ 2. (In particular this is true if V = L).

While Σ1
1 does not have the uniformizaton property, the next two exercises

show that we can get close.

Exercise 5.32 Let ≤lex be the lexicographic order on N . Suppose F ⊆ N
is closed and nonempty. Show that there is x ∈ F such that x ≤lex y for all
y ∈ F .

Exercise 5.33 [Von Neumann Uniformization] Suppose A ⊆ N ×N is Σ1
1. Let

C be the smallest σ-algebra with Σ1
1 ⊂ C. There is B ∈ C uniformizing A. [Hint:

There is a continuous f : N → N ×N with f(N ) = A. Let π(x, y) = x. For
a ∈ A, let Fx = {z ∈ N : π(f(z)) = x}. Let g : π(A) → N by g(x) is the
lexicographic least element of Fx. Show that g is an C-measurable function. Let
B = {(x, f(g(x))) : x ∈ π(A)}. Show that B ∈ C and B uniformizes A.]

Conclude from 4.23 that every Σ1
1-set has a C-measurable uniformization,

and hence a Lebesgue measurable uniformization.

Π1
1-sets

Many of the proofs in this section work just as well for Π1
1-sets. Here are

statements of the effective versions.

Theorem 5.34 i) If A ⊆ X is Π1
1, there is a computable f : X → Tr such that

x ∈ A if and only if f(x) ∈WF for all x ∈ X.
ii) Π1

1 has the reduction property.
iii) Any two disjoint Σ1

1 sets can be separated by a ∆1
1-set.

iv) Any Π1
1-subset of N ×N can be uniformized by a Π1

1-set.
v) If A ⊆ N × N is Π1

1 and π(A) = N , then A has a ∆1
1-uniformization.

Further analysis of Π1
1-sets will require looking at an effective version of

“ordinals”.

Recursive Ordinals

The set WF is Π1
1. If A ⊆ N is Π1

1, we know that A ≤w WF. We will show that
the reduction f can be chosen computable. There is a recursive tree T , such
that

x ∈ A⇔ ∀y (x, y) 6∈ [T ]⇔ T (x) ∈WF.

The function x 7→ T (x) is computable.
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A similar construction gives rise to a Π1
1-complete (for ≤m) subset of N.

Let O = {e ∈ N : φe is the characteristic function of a Well-founded tree
Te ⊆ N<ω}. Then e ∈ O if and only if

i) ∀σ φe(σ) ↓
ii) ∀σ ∈ N<ω ∀τ ∈ N<ω ((σ ⊆ τ ∧ φe(τ) = 1)→ φe(σ) = 1).
iii) ∀f : N→ N<ω∃n (φe(f(n)) = 0 ∨ φe(f(n+ 1)) = 0 ∨ f(n) 6⊂ f(n+ 1)).

Conditions i) and ii) are Π0
2 while iii) is Π1

1. Thus O is Π1
1.

Proposition 5.35 O is Π1
1-complete.

Proof We will argue that N \ O is Σ1
1-complete. Suppose A ∈ Σ1

1. There is
B ⊆ N × N in Π0

1 such that n ∈ A if and only if ∃x (n, x) ∈ B. There is a
recursive tree T ⊆ N×N<ω such that (n, x) ∈ A if and only if (n, x|m) ∈ T for
all m ∈ N. There is a recursive f : N→ N such that φf (n) is the characteristic
function of {σ : (n, σ) ∈ T}. Then φf (n) is the characteristic function of a tree
Tn and

n ∈ A⇔ Tn 6∈WF⇔ f(n) 6∈ O.

O will play a very important role in effective descriptive set theory. As a
first example, we will show how once we know the complexity of a set, we can
say find relatively simple elements of the set.

Lemma 5.36 Suppose T ⊆ N<ω is a recursive tree. If [T ] 6= ∅, there is x ∈ [T ]
with x ≤T O.

Proof There is a recursive function f such that φf(σ) is the characteristic
function of Tσ for all σ ∈ N<ω. We build ∅ = σ0 ⊂ σ1 . . . with σi ∈ T such that
[Tσi ] 6= ∅. Given σi. Let n ∈ N be least such that σî n ∈ T and f(σi) 6∈ O.

Corollary 5.37 (Kleene Basis Theorem) If A ⊆ N is Σ1
1 and nonempty,

there is x ∈ A with x ≤T O.

Proof There is a Π0
1-set B ⊆ N×N such that x ∈ A if and only if ∃y (x, y) ∈ B.

By the previous lemma there is (x, y) ∈ B with (x, y) ≤T O. Clearly x ≤T O.

Using the Uniformization Theorem, we can find definable elements of Π1
1-

sets.

Proposition 5.38 If A ⊆ N is Π1
1, there is x ∈ A such that x ∈ ∆1

2.

Proof Uniformizing {0} × A, we find x ∈ N such that B = {(0, x)} is Π1
1.

Then

x(n) = m ⇔ ∃y ((0, y) ∈ B ∧ y(n) = m)

⇔ ∀y ((0, y) 6∈ B ∨ y(n) = m)

The first definition is Σ1
2, while the second is Π1

2.

We next need to understand the possible heights of recursive trees.

Definition 5.39 We say that an ordinal α is recursive if there is a recursive
set A ⊆ N and ≺ a recursive linear order of A such that (A,≺) ∼= (α,<).
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Lemma 5.40 a) If α is a recursive ordinal and β < α, then β is a recursive
ordinal.

b) If α is a recursive ordinal, then α+ 1 is a recursive ordinal.
c) Suppose f : N → N, g : N → N are recursive functions such that Pf(n) is

a program to compute the characteristic function of An, Pg(n) is a program that
computes the characterisitic function of ≺n a well-order of An and (An,≺n) has
order-type αn. Then supαn is a recursive ordinal.

Proof a) and b) are routine. For c) we show that
∑
An is a recursive well-

order. Let A = {(n,m) : Mf(n)(m) = 1} and let (n,m) ≺ (n′,m′) if and only
if n < n′ or n = n′ and m ≺n m′. Then (A,≺) is a recursive well-order. Let α
be the order type of A. Then αn ≤ α for all n. Since supαn ≤ α, supαn is a
recursive ordinal.

There are only countably many recursive well-orders. Thus there are only
countably many recursive ordinals.

Definition 5.41 Let ωck
1 be the least non-recursive ordinal. We call this ordinal

the Church–Kleene ordinal.
More generally for any x we let ωx1 be the least ordinal not recursive in x.

We need to be able to compare ordinals with trees.

Definition 5.42 For σ, τ ∈ N<ω we say σ/τ if τ ⊂ σ or there is an n such that
σ(n) 6= τ(n), but σ(m) = τ(m) for all m < n. We call / the Kleene–Brower
order.

Exercise 5.43 a) / is a linear order of N<ω.
b) If T ⊆ N<ω is a tree, then T is well-founded if and only if (T, /) is a

well-order.[Hint: If σ0, σ1, . . . is an infinite descending sequence in (T, /), define
x inductively by x(n) = least m such that (x(0), . . . , x(n− 1),m) / σi for some
i. Prove that x ∈ [T ].]

c) Prove that ωck
1 = sup{ρ(T ) : T ⊆ N<ω a recursive well founded tree}.

The proof of 5.15 actually shows the following.

Theorem 5.44 i) The set {(S, T ) : ρ(S) ≤ ρ(T )} is Σ1
1.

ii) There is R ∈ Σ1
1(N ×N ) such that if T ∈WF, then {S : (S, T ) ∈ R} =

{S : ρ(S) < ρ(T )}.

Corollary 5.45 (Effective Σ1
1-Bounding) i) If A ⊆ O is Σ1

1, then there is
α < ωck

1 such that ρ(T ) < α for all T ∈ A.
ii) If A ⊆WF and A ∈ Σ1

1. Then ρ(T ) < ωck
1 for all T ∈ A.

Proof If either i) or ii) fails, then O = {e : φe is the characteristic function of
a recursive tree ∃T ∀σ ∈ N<ω((σ ∈ T ↔ φe(σ) = 1) and ∃S ∈ A ρ(T ) ≤ ρ(S))}
is Σ1

1, a contradiction.

Exercise 5.46 Prove that if A ⊆ N is ∆1
1, then A is Σ0

α for some α < ωck
1 .
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6 Determinacy

In this section we will introduce another logical tool that sheds new light on
Borel, analytic, and coanalytic sets, and is indispensable in the study of higher
levels of the projective hierarchy.

Let X be any nonempty set and let A ⊆ XN. We define an infinite two
player game G(A). Players I and II alternate playing elements of X . Player I
plays x0, Player II replies with x1, Player I then plays x3. . . . A full play of the
game looks like this.

Player I Player II
x0

x1

x2

x3

x4

x5

...
...

Together they play x = (x0, x1, x2, . . .) ∈ XN. Player I wins this play of the
game if x ∈ A. Otherwise Player II wins.

Definition 6.1 A strategy for Player I is a function τ : X<N → X .

Player I uses the strategy by opening with τ(∅). If Player II responds with
x0, then Player I replies τ(x0). If Player II next plays, x1, then Player II replies
τ(x0, x1). . . .

The full play looks like:

Player I Player II
τ(∅)

x0

τ(x0)
x1

τ(x0, x1)
x2

τ(x0, x1, x2)
...

...

Definition 6.2 We say that τ is a winning strategy for Player I if Player I
wins any game played using the strategy τ , i.e., for any x0, x1, x2, . . . ∈ X , the
sequence

τ(∅), x0, τ(x0), x1, τ(x0, x1), x2, τ(x0, x1, x2), . . .

is in A.

There are analogous definitions of strategies and winning strategies for Player
II.
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Definition 6.3 We say that the game G(A) is determined if either Player I or
Player II has a winning strategy.

We first show that if A is not too complicated, then G(A) is determined. We
consider X with the discrete topology and XN with the product topology.

Theorem 6.4 (Gale-Stewart Theorem) If A ⊆ XN is closed, then G(A) is
determined.

Proof Let T be a tree such that A = [T ]. Suppose Player II has no winning
strategy. We will show that Player I has a winning strategy. Suppose σ ∈ N<ω

and |σ| is even. We consider the game Gσ(A) where Players I and II alternate
playing elements of N to build x ∈ N and Player I wins if σ x̂ ∈ A.

Let P = {σ : |σ| is even and Player II has a winning strategy in Gσ(A)}. If
σ 6∈ T , then Player II has already won Gσ(A). In particular, always playing 0
is a winning strategy for Player II. Thus N<ω \ T ⊆ P .

Claim Suppose that for all n ∈ N there is m ∈ N such that σ n̂̂ m ∈ P . Then
σ ∈ P .

Player II has a winning strategy in Gσ(A); namely if Player I plays n and
Player II plays the leastm such that Player II has a winning strategy in Gσ

�

n
�

m,
and then uses the strategy in this game.

We describe a winning strategy for Player I. This strategy can be sumarized
as “avoid losing postions”.

Since Player II does not have a winning strategy ∅ 6∈ P . Player I’s strategy
is to avoid P . If we are in position σ where σ 6∈ P and |σ| is even, then by the
claim there is a least n such that σ n̂̂ m 6∈ P for all m. Player I plays n. No
matter what m Player II now plays the new position is not in P . If Player I
continues Playing playing this way they will play x ∈ N such that x|2n 6∈ P
for all n. In particular x|2n ∈ T for all n. Thus x ∈ [T ] and this is a winning
strategy for Player I.

Exercise 6.5 Show that if A ⊆ XN is open, then G(A) is determined

Exercise 6.6 Show that if A,B ⊆ XN, A is open and B is closed, then G(A∩B)
is determined.

Exercise 6.7 Suppose X0, X1, . . . are discrete topological spaces. If A ⊆
∏
Xi

we can consider a modified game where Player I plays x0 ∈ X0, Player II plays
x1 ∈ X1, Player I plays x2 ∈ X2,. . . . Player I wins if (x0, x1, . . .) ∈ A. Show
that if A is closed this game is determined.

What other games are determined? Under the axiom of choice there are
undetermined games.

Exercise 6.8 Use the axiom of choice to construct A ⊆ N such that no
player has a winning strategy in G(A). [Hint: Use AC to give a well-ordered
enumeration of all strategies and diagonalize against them.]

Martin proved the determinacy of Borel games.
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Theorem 6.9 (Borel Determinacy) If A ⊆ N is Borel, then G(A) is deter-
mined.

For a proof see [6] II §20.
This is the best result provable in ZFC. The results of the next subsection, for

example, show that if all analytic games are determined, then every uncountable
Σ1

2-set contains a perfect subset and this is false if V = L.
For Γ = Σ1

n or Π1
n we let Det(Γ) be the assertion that if A ∈ Γ, then G(A)

is determined. Projective determinacy PD is the assertion that all projective
games are determined.

Exercise 6.10 Show that Det(Σ1
n) if and only if Det(Π1

n).

The determinacy of projective games is intimately tied to the existence of
large cardinals.

Theorem 6.11 (Martin/Harrington) i) If there is a measurable cardinal,
then Det(Σ1

1) holds.
ii) Det(Σ1

1) holds if and only if x
# exists for all x ∈ N .

For a proof see [9] Theorem 105.
More recently Martin and Steel [13] have found reasonable large cardinal

hypotheses that imply PD.

Perfect Set Theorems

We first show how games can be used to prove perfect set theorems. Suppose
A ⊆ C. We define a game G∗(A) where at stage i Player I plays σi ∈ 2<ω and
Player II plays ji ∈ {0, 1}. Together they play

x = σ0̂ j0̂ σ1̂ j1σ2̂ j2 . . . ∈ C.

Player I wins if x ∈ A and Player II wins if x 6∈ A.

Proposition 6.12 If Player I has a winning strategy in G∗(A), then A contains
a perfect set.

Proof Let τ be a winning strategy for Player I. Define f : C → A by f(x) is
the play of the game where Player I uses τ and Player II plays x(0), x(1), . . ..
In other words

f(x) = τ(∅)̂ x(0)̂ τ(x0 )̂ x1̂ τ(x(0), x(1))̂ x2 τ̂(x(0), x(1), x(2), x(3)) . . . .

Clearly if x|n = y|n, then f(x)|n = f(y)|n. Thus f is continuous. Suppose
x 6= y and n is least such that x(n) 6= y(n). Let

µ = τ(∅)̂ x(0)̂ τ(x(0))̂ x1 . . . τ̂(x(0), . . . x(n− 1)).

Then f(x) ⊃ µ̂ x(n) and f(y) ⊃ µ̂ y(n). Thus f(x) 6= f(y). Thus f is continu-
ous and one-to-one. Hence f(C) is an uncountable closed subset of A.
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Proposition 6.13 If Player II has a winning strategy in G∗(A), then A is
countable.

Proof Let τ be a winning strategy for Player II. Consider a position p =
(σ0, j0, . . . , σn, jn) where Player II has played using τ and it is Player I’s turn
to play. Suppose x ∈ A and x ⊃ µ = σ0 ĵ0, . . . , σn ĵn. We say that x is rejected
at p if for all σn+1, if x ⊇ µ̂ σn+1, then x 6⊇ µ̂ σn+1 τ̂(σ0, . . . , σn+1). In other
words, up to stage p, it looks like it is possible that we will eventually play x,
but in fact no matter what Player I does at this stage, Player II will immediately
make a play which ensures that we will not eventually play x.

Claim If x ∈ A, there is a position p such that x is rejected at p.
Suppose not. Consider the following play of the game. Since x is not rejected

at the empty position. There is σ0 ⊂ x such that x ⊃ σ0 τ̂(σ0). Player I plays σ0.
Let pn denote the position after Player II’s nth move and let µn be the sequence
σ0̂ τ(σ(0))̂ . . . τ(σ0, . . . , σn). We assume by induction that x ⊃ µn. Since x is
not rejected at pn, there is σn+1 ∈ 2<ω such that x ⊃ µn σ̂n+1 τ̂(σ0, . . . , σn+1).
Player I plays σn+1. But then the final play of the game is

⋃
µn = x ∈ A,

contradicting the fact that τ is a winning strategy for Player II.

Claim There is at most one x ∈ A rejected at p.
Suppose x is rejected at p = (σ0, τ(σ0), . . . , σn, τ(σ0, . . . , σn)). Let µ = x|k

be the portion of x we have decided by position p. We claim that knowing only
p we can inductively determine the remaining values of x. Suppose we have
determined x(k), . . . , x(m− 1). If Player I plays x(k), . . . , x(m− 1), the Player
II must play 1− x(m+ 1). Thus

x(m) = 1− τ(σ0, . . . , σn, 〈x(k), . . . , x(m− 1)〉).

Thus there is a unique element of A rejected at p.

Since every element of A is rejected at one of the countably many possible
positions, A must be countable.

Corollary 6.14 If A is uncountable and G∗(A) is determined, then A contains
a perfect set.

Exercise 6.15 Let A ⊆ X . Prove the following without using determinacy.
a) If |A| ≤ ℵ0, then Player II has a winning strategy in G∗(A).
b) If A contains a perfect set, then Player I has a winning strategy in G∗(A).

We have only proved this for A ⊆ C, but using the fact that any two un-
countable standard Borel spaces are Borel isomorphic we see that it is true for
any uncountable Polish space.

Corollary 6.16 If PD holds, the any uncountable projective set contains a per-
fect subset.
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There is a technique of “unfolding” games, that allows us to show that if
Det(Σ1

n) holds, then every uncountable Σ1
n+1 set contains a perfect subset. We

will illustrate this idea by giving another proof of the perfect set theorem for
Σ1

1-sets using only the determinacy of closed games.
Suppose A ⊆ C is Σ1

1. Let B ⊆ C × N such that A = {x : ∃y (x, y) ∈ B}.
Consider the game G∗u(A) where at stage i Player I plays σi ∈ 2<ω and y(i) ∈ N

and Player II responds with ji ∈ 2. Together they play

x = σ0 ĵ0 σ̂1̂ j1̂ . . .

and
y = (y(0), y(1), . . .).

Player I wins if (x, y) ∈ A. By closed determinacy (or more correctly by 6.7),
G∗u(A) is determined.

Lemma 6.17 If Player I has a winning strategy in G∗u(A), then A contains a
perfect subset.

Proof As in 6.12 if τ is a winning strategy for Player I, there are continuous
functions f : C → C and g : C → N such that if Player II plays z(0), z(1), z(2), . . .
and Player I uses τ , then together they play x = f(z) ∈ C and y = g(z) ∈ N
with (x, y) ∈ B. As in 6.12 f is one-to-one and f(C) is an uncountable closed
subset of A.

Lemma 6.18 If Player II has a winning strategy in G∗u(A), then A is countable.

Proof Suppose x ∈ A. Choose y such that (x, y) ∈ B. As in 6.13 there is a
position p at which (x, y) is rejected. Let µ = (x(0), . . . , x(k−1)) be the portion
of x forced by p. If Player I now play (x(k), . . . , x(m− 1)) and y(n), then

x(m) = 1− τ(σ0, y(0), . . . , σn−1, y(n− 1), 〈x(0), . . . , x(m− 1)〉, y(n)〉.

Indeed for each possible value of y(n), there is at most one x rejected at p. Thus
the set of x rejected at p is countable and A is countable.

Lemmas 6.17 and 6.18 together with the determinacy of closed games gives
a second proof of the Perfect Set Theorem for Σ1

1.
In §7 we will examine this game again. At that time it will be useful to note

that if x is rejected at p, then x is recursive in τ .

Banach-Mazur Games

We will show that, assuming Projective Determinacy, all projective sets have
the Baire property. Unfolding this argument will prove in ZFC that all Σ1

1 sets
have the Baire property (and hence all Π1

1-sets have the Baire property).
Let A ⊆ N . Consider the Banach–Mazur game G∗∗(A) where at stage i,

Player I plays σ2i ∈ N<ω and Player II plays σ2i+1 ∈ N<ω such that σ0 ⊂ σ1 ⊂
σ2 ⊂ . . .. The final play of the game is x =

⋃
σn and Player I wins if x ∈ A.
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Lemma 6.19 Player II has a winning strategy in G∗∗(A) if and only if A is
meager.

Proof
(⇐) Suppose A =

⋃
nAn where each Ai is nowhere dense. We informally

describe a winning strategy for Player II. If, at stage i, Player I plays σ2i ∈ N<ω,
then Player II plays σ2i+1 ⊃ σ2i such that Nσ2i+1 ∩ Ai = ∅. Since each Ai is
nowhere dense this is always possible. If x =

⋃
σn is the final play of the game,

then, for each i,
x ∈ Nσ2i+1 ⊆ N \A.

Thus this is a winning strategy for Player II.

(⇒) Suppose τ is a winning strategy for Player II. Suppose x ∈ A. Let
p = (σ0, . . . , σ2m−1) be a position in the game where Player II has used τ . We
say that x is rejected at p if and only if x ⊃ σ2m−1 but for all σ2m ⊃ σ2m−1 if
x ⊃ σ2m−1, then x 6⊃ τ(σ0, σ2, . . . , σ2m).

Claim If x ∈ A, then there is a position p = (σ0, . . . , σ2m−1) such that x ⊃
σ2m−1 and x is rejected at p.

Suppose not. Because x is not rejected at ∅, there is σ0 such that x ⊃ τ(σ0).
Inductively we build σ0, σ2, . . . such that

x ⊃ τ(σ0, σ2, . . . , σ2m)

for all m. But then if Player I plays σ0, σ2, . . . and Player II uses τ , then the
eventually play x ∈ A contradicting the claim that τ is a winning strategy for
Player II.

Let Rp = {x ∈ A : x is rejected at position p}.

Claim Rp is nowhere dense.
Note that Rp ⊆ Nσ2m−1 . For all σ ⊃ σ2m−1 let ησ = τ(σ0, . . . , σ2m−1, σ).

Then ησ ⊃ σ and Rp ∩Nησ = ∅. Thus Rp is nowhere dense.

Thus A =
⋃
pRp is meager.

Lemma 6.20 If Player I has a winning strategy in G∗∗(A), then there is η ∈
N<ω such that Nη \A is meager.

Proof Let τ be Player I’s winning strategy for G∗∗(A). Suppose Player I’s
first move in G∗∗(A) is η. We will show that Nη \A is meager, by showing that
Player II has a winning strategy τ̂ in G∗∗(Nη \A).

Let
τ̂ (σ0, σ2, . . . , σ2m) = τ(σ0, σ2, . . . , σ2m).

In other words Player II plays G∗∗(Nη \A), by pretending to be Player I using
τ in a game of G∗∗(A).

If Player’s I first move in G∗∗(Nη \ A) is σ0, Player II checks to see how
Player I would reply if Player II played σ0 in G∗∗(A). The following picture
describes the play of the games.
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G∗∗(Nη \A) G∗∗(A)
Player I Player II Player I Player II
σ0 η

τ(σ0) σ0

σ1 τ(σ0)
τ(σ0, σ1) σ1

σ2 τ(σ0, σ1)
τ(σ0, σ1, σ2) σ2

...
...

...
...

If x is a play of G∗∗(Nη \ A) where Player II uses the strategy τ̂ , then x is
also a play of G∗∗(A) where Player I uses τ . Thus x ∈ Nη ∩ A and Player II
wins the play of G∗∗(Nη \ A). Thus τ̂ is a winning strategy for Player II and
Nσ \A is meager.

Theorem 6.21 Assuming Projective Determinacy all projective sets have the
Baire property.

Proof Let A ⊆ N . If Player II has a winning strategy in G∗∗(A), then by 6.20
A is meager.

Suppose Player I has a winning strategy, let S = {σ ∈ N<ω : Nσ \ A is
meager}. By 6.19, S is nonempty. Let U =

⋃
σ∈S Nσ \A. Then

U \A =
⋃

σ∈S

Nσ

is meager. It suffices to show that A \ U is also meager.
Suppose A \ U is nonmeager. Since the game G∗∗(A \ U) is determined

and, by 6.20, Player II does not have a winning strategy, Player I must have a
winning strategy and, by 6.19, there is η such that Nη \ (A \U) is meager. But
then Nη \ A is meager and η ∈ S. But then Nη ⊆ U and Nη \ (A \ U) = Nη, a
contradiction.

Exercise 6.22 Give another proof that analytic sets have the Baire property
using the determinacy of closed games and “unfolding” a Banach–Mazur game.

Further Results

Projective Determinacy can also be used to prove that all projective sets are
Lebesgue measurable (see [6] §21 or [9] §43).

Can every projective set be uniformized by a projective set? If V = L, then
we can use the ∆1

2 well-ordering of N to show that they can. Moschovakis
showed that Projective Determinacy also leads to an interesting answer.

Theorem 6.23 (Periodicity Theorems) Assume Projective Determinacy.
a) The classes with the reduction property are exactly Π1

2n+1 and Σ1
2n+2.

b) The classes with the uniformization property are exactlyΠ1
2n+1 and Σ

1
2n+2.
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One key idea is to use determinacy to build Π1
2n+1 prewellorderings. For

proofs see [6] §39.
Another interesting class of games are theWadge games. Suppose A,B ⊆ N .

Consider the game Gw(A,B) where Player I plays x(0), x(1), . . ., and Player II
plays y(0), y(1) with x(i), y(i) ∈ N. Player II wins if x ∈ A if and only if x ∈ B.

Lemma 6.24 a) If A and B are Borel, then Gw(A,B) is determined.
b) Assuming Projective Determinacy if A and B are Projective, then Gw(A,B)

is determined.
c) If Player II has a winning strategy in Gw(A,B), then A ≤w B.
d) If Player I has a winning strategy in Gw(A,B), then B ≤w (N \A).

Proof b) is clear. a) follows from Borel Determinacy.

c) Suppose Player II has a winning strategy. Let f(x) = y, where y ∈ N is
Player II’s plays using this strategy if Player I plays x(0), x(1), . . .. Clearly f is
continuous and x ∈ A if and only if f(x) ∈ B. Thus A ≤w B.

d) Suppose Player I has a winning strategy and g(y) = x where x is Player
I’s play if Player II plays y and Player I uses the winning strategy. Then y ∈ B
if and only if g(y) 6∈ A. Thus B ≤w A.

Corollary 6.25 If A ∈ Σ0
α \∆

0
α, then A is Σ0

α-complete.

Proof Suppose B ∈ Σ0
α and B 6≤w A. Then Player II does not have a winning

strategy in Gw(B,A). By Borel Determinacy, Player I has a winning strategy.
Thus A ≤w (N \B) and A ∈ Π0

α, a contradiction.

Exercise 6.26 Show that under Projective Determinacy and non-Borel Σ1
1-set

is Σ1
1-complete.

We write A <w B if A ≤w B but B 6≤w A.

Theorem 6.27 (Wadge, Martin) There is no infinite sequence of Borel sets
A0, A1 . . . with Ai+1 <w Ai for all i.

Similarly under Projective Determinacy, there is no infinite descending Wadge-
chain of projective sets.

See [6] 21.15 for a proof.
We give one more application of determinacy as an Exercise.

Exercise 6.28 Let ≤T be Turing reducibility and x ≡T y if x ≤T y and x ≤T y.
We say that A ⊆ N is Turing-invariant if whenever x ∈ A and y ≡T x, then
y ∈ A. If z ∈ N , the cone Cz = {x ∈ N : z ≤T x}.

a) Show that if A is Turing-invariant and Cz ⊆ A, then there is no y with
Cy ∩ A = ∅.

b) Show that if A is Borel and Turing-invariant, then either A contains a
cone or there is a cone disjoint from A. [Hint: Consider the game G(A) where
Player I plays x(0), x(2), . . . , Player II plays x(1), x(2), . . . and Player I wins if
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x ∈ A. Show that if τ is a winning strategy for Player I, then Cτ ⊆ A, while if
τ̂ is a winning strategy for Player II, then C �

τ ∩ A = ∅.]
c) Let Ω be the collection of Turing-invariant Borel subsets of N . Show that

Ω is σ-algebra.
d) Let µ : Ω→ 2 be µ(A) = 1 if and only if A contains a cone. Show that µ

is a σ-additive measure on Ω. µ is called the Martin-measure.

Assuming Projective Determinacy we can consider projective sets instead of
Borel sets.

The axiom of choice tells us there are undetermined games. It is interesting
to abandon the axiom of choice and consider ZF with the Axiom of Determinacy
AD which asserts that all games are determined. While AD is refutable from
ZFC, it is consistent with large cardinals that ZFC + L(R) |= AD. ZF+AD has
wild consequences. For example:

Theorem 6.29 (Solovay) If ZF + AD then ℵ1 and ℵ2 are measurable cardi-
nals, while ℵn is singular of cofinality ω for 3 ≤ n < ω.

For a proof of the first assertion see [9] Theorem 103.

7 Hyperarithmetic Sets

Our first goal is to try to characterize the ∆1
1-sets. In particular we will try to

formulate the “light-faced” version of

∆1
1 = Borel.

We begin by studying a method of coding Borel sets.

Borel Codes

Let X = Nk ×N l. Let SX be as in §3.

Definition 7.1 A Borel code for a subset of X is a pair 〈T, l〉 where T ⊆ N<ω

is a well-founded tree and l : T → ({0} × {0, 1}) ∪ ({1} × SX) such that:
i) if l(∅) = 〈0, 0〉, then σ 0̂ ∈ T and σ n̂ 6∈ T for all n ≥ 1;
ii) if l(∅) = 〈1, η〉, then σ n̂ 6∈ T for all n ∈ N.

Let BC be the set of all Borel codes. It is easy to see that BC is Π1
1.

If x = 〈T, l〉 is a Borel code, we can define B(x) the Borel set coded by x. If
σ ∈ T , recall that Tσ = {τ : σ τ̂ ∈ T}. We let lσ : Tσ → {0} × 2 ∪ {1} × SX by
lσ(τ) = l(σ τ̂). It is easy to see that 〈Tσ, lσ〉 is also a Borel code.

Definition 7.2 We define B(〈T, l〉) inductively on the height of T .
i) B(〈∅, ∅〉) = ∅.
ii) If l(∅) = 〈1, η〉, then B(〈T, l〉) = Nη.
iii) If l(∅) = 〈0, 0〉, then B(〈T, l〉) = X \B(〈T〈0〉, l〈0〉〉).
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iv) If l(∅) = 〈0, 1〉, then

B(〈T, l〉) =
⋃

〈n〉∈T

B(〈T〈n〉, l〈n〉〉).

Exercise 7.3 a) Show that if x ∈ BC, then B(x) is a Borel set.
b) Show that if A ⊆ X is Borel, then there is x ∈ BC with B(x) = A.

Lemma 7.4 There are R ∈ Σ1
1 and S ∈ Π1

1 such that if x ∈ BC then

y ∈ B(x)⇔ (x, y) ∈ R⇔ (x, y) ∈ S.

In particular B(x) ∈ ∆1
1(x).

Proof We define a set A such that (x, y, f) ∈ A if and only if x is a pair 〈T, l〉
where T ⊆ N<ω is a tree, l : T → {0} × 2 ∪ {1} × SX and f : T → 2 such that
for all σ ∈ T :

i) if l(∅) = 〈1, η〉, then f(σ) = 1 if and only if y ∈ Nη;
ii) if l(∅) = 〈0, 0〉, then f(σ) = 1 if and only if f(σ 0̂) = 0;
iii) if l(∅) = 〈0, 1〉, then f(σ) = 1 if and only if f(σ n̂) = 1 for some n.

An easy induction shows that if x = 〈T, l〉 is a Borel code then (x, y, f) ∈ A
if and only if f is the function

f(σ) = 1⇔ y ∈ B(〈Tσ, lσ〉).

It is easy to see that A is arithmetic and if x ∈ BC, then

y ∈ B(x) ⇔ ∃f ((x, y, f) ∈ A ∧ f(∅) = 1)

⇔ ∀f ((x, y, f) 6∈ A ∨ f(∅) = 1)

Corollary 7.5 If x ∈ BC is recursive, then B(x) is ∆1
1.

Proof Let R and S be as in the previous lemma. Let φe = x. Then

y ∈ B(x) ⇔ ∃z ((∀n φe(n) ↓= z(n)) ∧ R(z, y))

⇔ ∀z ((∀n φe(n) ↓= z(n))→ S(z, y)).

The first condition is Σ1
1 and the second is Π1

1.

Recursively Coded Borel Sets

Our goal is to show that ∆1
1 is exactly the collection of Borel sets with recursive

codes. That will follow from the following two results and Σ1
1-Bounding.

Theorem 7.6 If A ⊆ Y is a recursively coded Borel set and f : X → Y is
computable, then f−1(A) is a recursively coded Borel set.
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Proposition 7.7 If α < ωck
1 , then WFα is a recursively coded Borel set.

Corollary 7.8 Suppose A ⊆ X. The following are equivalent:
i) A is ∆1

1;
ii) A is a recursively coded Borel set.

Proof We have already shown that every recursively coded Borel set is ∆1
1.

Suppose A is ∆1
1. Since A is Π1

1, there is a computable f : X → Tr such that
x ∈ A if and only if f(x) ∈WF. The set

f(A) = {y : ∃x x ∈ A ∧ f(x) = y}

is a Σ1
1-subset of WF. By Σ1

1-Bounding, there is α < ωck
1 such that f(A) ⊆WFα.

By 7.7WFα is recusively coded, and by 7.6A = f−1(WFα) is recursively coded.

For notational simplicity we will assume X = N , but all our arguments
generalize easily.

Let BCrec = {(e, x) : φxe is a total function and φxe ∈ BC}. Then

(e, x) ∈ BCrec ⇔ φxe is total ∧ ∀z (∀n φxe (n) = z(n))→ z ∈ BC).

Thus BCrec is Π1
1.

If e ∈ BCrec, then Brec(e, x) is the Borel set coded by φxe . A similar argument
shows that there are Rrec ∈ Σ1

1 and Srec ∈ Π1
1 such that if (e, x) ∈ BCrec then

y ∈ Brec(e, x)⇔ Rrec(e, y)⇔ Srec(e, x)

We say e ∈ BCrec and x ∈ Brec(e) if (e, ∅) ∈ BCrec and x ∈ Brec(e, ∅).
The proofs of both 7.6 and 7.7 will use the Recursion Theorem to do a

transfinite induction.
We begin with the base case of the induction

Lemma 7.9 There is a recursive function F : N × SY → N such that if
f : X → Y is computable and e is a code for the program computing f , then
Brec(F (e, i)) = f−1(Nη).

Proof For notational simplicity we assume X = Y = N , this is no loss of
generality. Let

W = {ν ∈ N<ω : ∀m < |η| ∃s ≤ |ν| φνe (m) ↓s= η(m)}.

Then W is recursive and f−1(Nη) =
⋃
ν∈W Nν . Let ν0, ν1, . . . be a recursive

enumeration of N<ω. Let T = {∅} ∪ {〈n〉 : σn ∈ W} and let l(∅) = 〈0, 1〉,
l(〈n〉) = 〈1, ν〉. Then x = 〈T, l〉 is a recusive code. Given e and η we can easily
compute F (e, η) = i such that φi = x.

Lemma 7.10 i) There is a total recursive function Hc : N → N such that if
e ∈ BC, then Brec(Hc(e)) = N \Brec(e).

ii) There is a total recursive function Hu : N→ N such that if φe(n) ∈ BCrec

for all n, then Brec(Hu(e)) =
⋃
nBrec(φe(n)).

64



Proof i) φe is a code for a pair 〈T, l〉. Let

T ′ = {∅} ∪ {0̂ η : η ∈ T}

and l′(∅) = 〈0, 0〉, l′(0̂ η) = l(η). It is easy to find Hc such that Hc(e) codes
〈T ′, l′〉 and that if e ∈ BCrec, then Hc(e) is a code for the complement.

ii) Suppose φe(n) code a pair 〈Tn, ln〉. Let

T = {∅} ∪ {n̂ σ : σ ∈ Tn}

and let l(∅) = 〈0, 1〉 and l(n̂ σ) = ln(σ). It is easy to find Hu such that Hu(e)
codes 〈T, l〉. If each 〈Tn, ln〉 is a Borel code, then 〈T, l〉 codes their union.

Theorem 7.6 follows from the next lemma.

Lemma 7.11 If x = 〈T, l〉 is a recursive Borel code, there is a recursive func-
tion G : N× T → N such that if f : N → N is a computed by program Pe, then
G(e, σ) ∈ BCrec is a Borel code for f

−1(B(〈Tσ, lσ〉) for all σ ∈ T .

Proof
We define a recursive function g : N× N× T → N as follows:
i) If l(σ) = 〈1, η〉, then g(i, e, σ) = F (e, η);
ii) If l(σ) = 〈0, 0〉, then g(i, e, σ) = Hc(φi(e, σ 0̂));
iii) Suppose l(σ) = 〈0, 1〉. Choose j such that φj(n) = φi(e, σ n̂). Then

g(i, e, σ) = Hu(j).

By the Recursion Theorem, there is î such that φ�

i(e, σ) = g(̂i, e, σ) for all
e, σ. Let G(e, σ) = φ�

i(e, σ).
We prove by induction on T , that G(e, σ) is a code for f−1(B(〈Tσ , lσ〉). By

i) this is clear if l(σ) = 〈1, η). We assume the claim is true for all τ ⊃ σ.
If l(σ) = 〈0, 0〉, then

G(e, σ) = g(̂i, e, σ) = Hc(φ
�

i(e, σ)) = Hc(G(e, σ 0̂)).

By inducition, Hc(G(e, σ n̂) is a code for

f−1(B(〈Tσ, lσ〉) = X \ f−1(B(〈Tσ
�

0, lσ
�

0〉).

If l(σ) = 〈0, 1〉, then G(e, σ n̂) is a Borel code for An = f−1(B(〈Tσ n̂, lσ
�

n〉).
We choose j such that φj(n) is a code for An and G(e, σ) = Hu(j) is a code for⋃
An.

Theorem 7.7 follows from the next lemma.

Lemma 7.12 If T is a recursive well founded tree, then there is a recursive
function G : T → BCrec, such that Brec(G(σ)) = {S ∈ Tr : ρ(S) ≤ ρ(Tσ)}.

Proof For σ ∈ N<ω let fσ : Tr → Tr be the computable function S 7→ Sσ.
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Note that ρ(S) ≤ ρ(T ) if and only if for all n ∈ N there is m ∈ N such that
ρ(S〈n〉) ≤ ρ(T〈m〉). Thus

{S ∈ Tr : ρ(S) ≤ ρ(Tσ)} =
⋂

n∈N

⋃

m∈N

f−1
〈n〉({S ∈ Tr : ρ(S) ≤ ρ(Tσ

�

m)}).

Fix c such that Brec(c) = ∅. We define a recursive function g : N× T → N

as follows.
i) If σ 6∈ T , then g(i, σ) = c.
ii) Otherwise g(i, σ) is a Borel code for

⋂

n

⋃

m

f−1
〈n〉(Brec(φi(σ̂m))).

We can do this using the functions F,Hu and Hc above. Of course for some i,
this may well be undefined.

By the Recursion Theorem there is î such that φ�

i(σ) = g(̂i, σ) for all σ.
An easy induction shows that G = φ�

i is the desired function.

Hyperarithmetic Sets

Definition 7.13 We say x ∈ N is hyperarithmetic if x ∈ ∆1
1. We say that x is

hyperarithmetic in y, and write x ≤hyp y if x ∈ ∆1
1(y).

We sometimes let HY P denote the hyperarithmetic elements of N .

Exercise 7.14 i) Show that if x ≤hyp y ≤hyp z, then x ≤hyp z.
ii) Show that if x ≤T y, then x ≤hyp y.

Lemma 7.15 i) {(x, y) : x ≤hyp y} is Π
1
1. In particular, {x : x ∈ ∆1

1} is Π
1
1.

Proof x ≤hyp y if and only if ∃e (BCrec(e, y) ∧ ∀n∀m (x(n) = m ↔ (n,m) ∈
BCrec(e, y).

This definition is Π1
1.

Theorem 7.16 Suppose A ⊆ N ×N is Π1
1. Then B = {x : ∃y ≤hyp x (x, y) ∈

A} is Π1
1.

Proof x ∈ B if and only if
∃e ∈ N ∀z ∈ N (φe = z → (z ∈ BC∧ (∀n∀m ((y(n) = m → S((n,m), z)) ∧

(y(n) 6= m→ ¬R((n,m), z)))) ∧ (x, y) ∈ A)
This definition is Π1

1.

We next give a refinement of Kleene’s Basis Theorem.

Lemma 7.17 If ωck
1 < ωx1 , then O ≤hyp x.
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Proof Clearly O is Π1
1(x). There is T recursive in x such that T ∈ WF and

ρ(T ) > ωck
1 . Then

O = {e : e codes a recursive tree S and ρ(S) < ρ(T )}

is Σ1
1(x). Thus O ≤hyp x.

Theorem 7.18 (Gandy’s Basis Theorem) If A ⊆ N is Σ1
1 and nonempty,

there is x ∈ A such that x ≤T O, x <hyp O and ωck
1 = ωx1 .

Proof Let B = {(x, y) : x ∈ A ∧ y 6≤hyp x}. By 7.15 B is Σ1
1. By Kleene’s

Basis Theorem, there is (x, y) ∈ B with (x, y) ≤T O. If O ≤hyp x, then
y ≤T O ≤hyp x, so y ≤hyp x, a contradiction. Thus y ≤hyp x, a contradiction.
By the previous lemma ωck

1 = ωx1 .

The Effective Perfect Set Theorem

The following theorem is very important.

Theorem 7.19 (Harrison) Let A ⊆ N be Σ1
1. If A is countable, then every

element of A is hyperarithmetic. In particular, if A contains a nonhyperarith-
metic element, then A contains a perfect set.

We delay the proof to the end of the section and look at some important
corallaries.

Corollary 7.20 Suppose A ⊆ N ×N is ∆1
1 and {y : (x, y) ∈ A} is countable

for all x ∈ N . Then
i) the projection π(A) = {x : ∃y (x, y) ∈ A} is ∆1

1 and
ii) A has a ∆1

1-uniformization

Proof
i) Clearly π(A) is Σ1

1, but by Harrison’s Theorem

∃y (x, y) ∈ A↔ ∃y ≤hyp x (x, y) ∈ A.

The later condition is Π1
1.

ii) Let

A∗ = {(x, e) : e ∈ BCrec(x) ∧ ∀y(y = Brec(e, x)→ (x, y) ∈ A}.

Then A∗ is Π1
1 and has a Π1

1 uniformization B. But

(x, e) 6∈ B ⇔ x 6∈ π(A) ∨ ∃i 6= e (x, i) ∈ B.

Thus B is ∆1
1. Let

C = {(x, y) : ∃e (x, e) ∈ B ∧ y = Brec(e, x)}.

Then C is a ∆1
1-uniformization of A.

Relativizing these corollaries lead to interesting results about Borel sets.
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Corollary 7.21 Suppose A ⊆ N ×N is a Borel set such that every section is
countable. Then X the projection of X is Borel and X can be uniformized by a
Borel set.

Corollary 7.22 Suppose f : N → N is continuous, A is Borel and f |A is
one-to-one. Then f(A) is Borel.

Proof f(A) is the projection of {(x, y) : x ∈ A ∧ f(x) = y} and sections are
singletons.

These results all have classical proofs, but in §8 we will give an example of
an effective proof of a result where no classical proof is known.

Suppose A ⊆ N is Π0
1. We consider the game G(A) where Player I and II

alternate playing x(i) ∈ N and Player I wins if x ∈ A.

Theorem 7.23 If Player II has a winning strategy in G(A), then Player II has
a hyperarithmetic winning strategy.

Proof Let T be a recursive tree such that A = [T ]. Suppose Player II does
not have a hyperarithmetic winning strategy. We will show that Player I has
a winning strategy. Suppose σ ∈ N<ω and |σ| is even. We consider the game
Gσ(A) where Players I and II alternate playing elements of N to build x ∈ N
and Player I wins if σ x̂ ∈ A.

Let P = {σ : |σ| is even and Player II has a hyperarithmetic winning strategy
in Gσ(A)}. If σ 6∈ T , then Player II has already won. In particular, always
playing 0 is a hyperarithmetic winning strategy for Player II. Thus N<ω\T ⊆ P .

Claim Suppose that for all n ∈ N there is m ∈ N such that σ n̂̂ m ∈ P . Then
σ ∈ P .

Let B = {(n,m, e) : e is a hyperarithmetic code for τ and ∀y if we play
Gσ

�

n
�

m(A) where Player I plays y and Player II plays using σ, then the result
is in A}. The set B is Π1

1. and ∀n∃m∃e(n,m, e) ∈ B. By selection there is a
∆1

1-function f : N → N2 such that (n, f(n)) ∈ B for all n ∈ N. Player II has
a hyperarithmetic winning strategy in Gσ(A); namely if Player I plays n and
f(n) = (m, e), then Player II plays m, and then uses the strategy coded by e.

We describe a winning strategy for Player I.
Since Player II does not have a hyperarithmetic winning strategy ∅ 6∈ P .

Player I’s strategy is to avoid P . If we are in position σ where σ 6∈ P and |σ| is
even, then by the claim there is a least n such that σ n̂̂ m 6∈ P forall m. Player
I plays n. No matter what m Player II now plays the new postion is not in P .
If Player I continues Playing playing this way they will play x ∈ N such that
x|2n 6∈ P for all n. In particular x|2n ∈ T for all n. Thus x ∈ [T ] and this is a
winning strategy for Player I.

Exercise 7.24 Suppose A is Π0
1 and Player I has a winning strategy in G(A).

Then Player I has a winning strategy hyperaritmetic in O.

Proof of 7.19 Suppose A is Σ1
1. We consider the unfolded game G∗u(A) from

§5. This is a closed game and an argument similar to the one above shows
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that if Player II has a winning strategy, then there is a hyperarithmetic winning
strategy τ . Then A is countable. The proof of 6.18 shows that every x ∈ A is
rejected at some position and x ≤T τ . Thus x is hyperarithmetic and A ⊆ HYP.

Exercise 7.25 Show that if A is Σ1
1 and uncountable, then there is a continuous

injection f : C → A with f computable in x for some x ≤hyp O.

Further Unifomization Results

We will use hyperarithmetic theory to prove several other classical unifomization
results. We begin with a variant of Corollary 7.21.

Theorem 7.26 Suppose A ⊆ N × N is a Borel set with countable sections.
Then there are Borel measurable functions f0, f1, . . . with disjoint graphs such
that A is the union of the graphs.

Before proving this we need one lemma about hyperarithmetic sets. If x ∈
NN2

we identify x with (x0, x1, . . .) in NN where xn(m) = x(n,m).

Lemma 7.27 Suppose A is a ∆1
1-subset of HYP. There is a hyperarithmetic

x ∈ NN2

such that A ⊆ {x0, x1, . . .}.

Proof Let

B = {(x, i) ∈ N×N : x ∈ A∧i ∈ BCrec∧∀n∀m (x(n) = m↔ (n,m) ∈ Brec(i))}.

Then B is Π1
1 and π(B) = A. By selection, there is a ∆1

1 function s : A → N,
uniformizing B.

Let C = {i : ∃x ∈ A s(x) = i}. Clearly C is Σ1
1. Since

i ∈ C ↔ ∃x ∈ HYP (x ∈ A ∧ s(x) = i),

C is ∆1
1. Let

x(i, n) =

{
0 if i 6∈ C
m if i ∈ D ∧ (n,m) ∈ Brec(i)

.

Then A ⊆ {x0, x1, . . .}.

Exercise 7.28 Show that the same is true if A is Σ1
1. [Hint: First show that

any Σ1
1 subset of HYP is contained in an ∆1

1 subset of HYP.]

Proof of Theorem 7.26 By relativizing, we assume that A is ∆1
1. Suppose

A ⊆ N × N has countable sections. By the Effective Perfect Set Theorem,
for any x the set Ax = {y : (x, y) ∈ X} is a ∆1

1(x) subset of {y : y ≤hyp x}.

By relativising the lemma, there is y ∈ NN2

such that y ≤hyp x and Ax ⊆
{y0, y1, . . .}.

Let B = {(x, j) ∈ N × N : j ∈ BCrec(x) ∧ ∀z ((x, z) ∈ A →
∃n∀m∀k (z(m) = k)↔ (n,m, k) ∈ Brec(x, j)}. Then B is Π1

1 and π(B) = π(A).
By 7.21 π(A) is ∆1

1. Thus, by selection, there is a ∆1
1 function t : π(A) → N

uniformizing B.
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Let gn : π(A)→ N be such that gn(x) = y if and only if

y(i) = j ⇔ (n, i, j) ∈ Brec(x, t(x)).

Since gn has a ∆1
1-graph, it is Borel measurable and A is contained in the union

of the graphs of the gn.
Let

Cn =

{
x ∈ π(A) : (x, gn(x)) ∈ A ∧

n−1∧

i=0

gn(x) 6= gi(x)

}

and let fn = gn|Cn. Each gn is Borel measurable and A is the disjoint union of
the graphs of the gn.

We next uniformize Borel sets with compact sections. We begin with a
lemma that compares two different measures of the complexity of a set. Suppose
a set A is ∆1

1 and open. There is no reason to believe A is Σ0
1. For example if

W ⊂ N is any ∆1
1 set, then A = {x ∈ N : x(0) ∈ W} is ∆1

1 and open, but need
not be Σ0

1. The next lemma shows while A is not Σ0
1, A will be Σ0

1(x) for some
x ∈ HYP.

Lemma 7.29 Suppose A ⊆ N is ∆1
1 and open. Then there is a hyperarithmetic

S ⊆ N<ω such that A =
⋃
σ∈S Nσ.

Proof Let S = {σ : ∀x x ⊃ σ → x ∈ A}. Then S is Π1
1 and A =

⋃
σ∈S Nσ.

There is a computable f : N<ω → Tr such that

x ∈ S if and only if f(x) ∈WF.

Let
B = {τ : ∀x ∈ A∃σ ρ(f(τ)) 6≤ ρ(f(σ)) ∧ σ ⊂ x}.

Note that B is Π1
1 and N<ω \ S ⊆ B. If B = N<ω \ S, then S is ∆1

1, as desired.
If not, there is τ ∈ S ∩B. Then S0 = {σ : f(σ) < f(τ)} is ∆1

1 and

A =
⋃

σ∈S0

Nσ ⊆
⋃

σ∈S

Nσ = A.

If A is ∆1
1 and closed, then there is a ∆1

1-set S ⊆ N<ω with N\A =
⋃
σ∈S Nσ.

Let T = {σ ∈ N<ω : ∀τ ⊆ σ τ 6∈ S}. Then T is a hyperarithmetic tree and
A = [T ]. If A is compact, we can go a bit further.

Lemma 7.30 If A is ∆1
1 and compact, then there is a finite branching hyper-

arithmetic tree T such that A = [T ]. More generally, if A is a compact Σ1
1-set, F

is a closed ∆1
1-set, and A ⊆ F , then there is a finite branching hyperarithmetic

tree T such that A ⊆ [T ] ⊆ F .
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Proof By the remarks above, there is a hyperarithmetic tree T such that
F = [T ].

Let B = {(σ,C) : σ ∈ N<ω ∧ C ⊂ N finite ∧ ∀x ((x ∈ A ∧ σ ⊂ x)→
(
∧
i∈C σ î ∈ T ∧

∨
i∈C x ⊃ σ î).

Then B is Π1
1. If Nσ∩A = ∅, then (σ,C) ∈ B for all finite C ⊂ N. If Nσ∩A 6= ∅,

then, by compactness, there is a finite set C ⊂ N such that

A ∩Nσ =
⋃

i∈C

A ∩Nσ
�

i.

Clearly (σ,C) ∈ B. By 5.28 there is a ∆1
1-function f such that if σ ∈ N<ω, then

(σ, f(σ)) ∈ B. Let

T1 = {σ ∈ T :
∧

i<|σ|

σ(i) ∈ f(σ|i)}.

Clearly T1 ⊆ T is ∆1
1 and finite branching. By choice of B, if x ∈ A, then

x ∈ [T1].

Corollary 7.31 If A ⊆ N is ∆1
1, compact and nonempty, then there is x ∈ A

such that x ∈ HYP.

Proof There is a hyperarithmetic finite branching tree T such that A = [T ].
By König’s Lemma, if {τ ∈ T : σ ⊆ τ} is infinite, then there is x ∈ Nσ ∩A. Let

T2 = {σ ∈ T : ∀n > |σ| ∃τ σ ⊂ τ ∧ τ ∈ T ∧ |τ | = n}.

Then T2 is hyperarithmetic (indeed T2 is arithmetic in T ) and T2 is pruned.
Inductively define x ∈ N such x(n) is least such that 〈x(0), x(1), . . . , x(n)〉 ∈ T2.
Then x is recursive in T2 and hence, hyperarithmetic.

Corollary 7.32 (Novikov) If A ⊆ N × N is ∆1
1 and all sections Ax = {y :

(x, y) ∈ A} are compact, then π(A) is ∆1
1 and there is a ∆1

1 uniformization of
X.

In particular, any Borel A ⊆ N × N with compact sections has a Borel
uniformization.

Proof Clearly π(A) is Σ1
1. By relativizing the previous corollary, we see that

x ∈ π(A) ⇔ ∃y ≤hyp x (x, y) ∈ A.

Hence π(A) is ∆1
1.

Let B = {(x, e) : x 6∈ π(A) ∨ (e, x) ∈ BCrec and if y ∈ N is coded by (e, x)
then (x, y) ∈ A}. Then B is Π1

1 and by 5.28 there is a ∆1
1 function f unifomizing

B. The set C = {(x, y) : x ∈ π(A) ∧ (x, f(x)) codes y} is a ∆1
1-uniformization

of A.

We will prove one further generalization. We first need one topological result.
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Exercise 7.33 Suppose A ⊆ N is closed, f : N → N is continuous and
f(A) ⊆

⋃
Fn where each Fn is closed. There is σ ∈ N<ω and n ∈ N such that

A ∩ Nσ 6= ∅ and f(A ∩ Nσ) ⊆ Fn. [Hint: Suppose not. Build σ0 ⊂ σ1 ⊂ . . .
such that A ∩ Nσi 6= ∅ and f(Nσi+1 ∩ Fi) = ∅. Consider x =

⋃
σi to obtain a

contradiction.]

Definition 7.34 We say that A is aKσ set if it is a countable union of compact
sets.

Since Rn is locally compact, in Rn every Fσ-set is a Kσ-set.

Lemma 7.35 Suppose A is ∆1
1 and a Kσ-set. Then there is x ∈ A ∩HYP.

Proof There is a Π0
1-set B ⊆ N ×N such that A is the projection of B. By

the previous exercise, there is a basic open set N such

A1 = {x : ∃y (x, y) ∈ N ×B}

is Σ1
1 and contained in a closed subset of F of A. Then

A1 = {x : ∀σ (σ ⊂ x→ ∃y (y ∈ A1 ∧ σ ⊂ y))}

the closure of A1 is also Σ1
1 and contained in A.

Let B = {(x, σ) : x 6∈ A ∧ σ ⊂ x ∧ ∀y (y ⊃ σ → y 6∈ A1}. Then B is Π1
1 and

for all x 6∈ A there is a σ such that (x, σ) ∈ B. By 5.28 there is a ∆1
1 function

f such that (x, f(x)) ∈ B for all x 6∈ A.
Let W0 = {f(x) : x 6∈ A}, let W1 = {σ : ∀y ⊃ σ y 6∈ A1}. Then W0 is

Σ1
1, W1 is Π1

1 and W0 ⊆ W1. By Σ1
1-separation, there is a ∆1

1-set W such that
W0 ⊆W ⊆W1. Let

T = {σ : ∀τ ⊆ σ : τ 6∈W}.

Then T is a ∆1
1 tree. Since W ⊆W1, A1 ⊆ [T ]. Since W0 ⊆W , [T ] ⊆ A.

By 7.30 there is a finite branching tree T1 ∈ ∆1
1 such that T1 ⊂ T and

A1 ⊆ [T1] ⊆ [T ] ⊆ A.

As in 7.31 there is x ∈ [T1] ∩HYP.

Corollary 7.36 (Aresenin, Kunugui) If A ⊆ N × N is Borel and every
section if Kσ, then π(A) is Borel and A has a Borel uniformization.

These proofs are a little unsatisfactory as we have only proved the uniform-
results for N × N or more generally recursively presented Polish spaces (like
Rn). Since “compact” and “Fσ” are not preserced by Borel isomorphisms we
can not immediately transfer these results to arbitrary Polish spaces. In fact
these results are true in general (see [6] 35.46).

Exercise 7.37 a) Modify the proof of the Effective Perfect Set Theorem, using
the Banach–Mazur game, to prove that if A ⊆ N is a nonmeager ∆1

1-set, then
there is a hyperarithmetic x ∈ A.

b) Prove that any Borel set with nonmeager sections can be uniformized by
a Borel set.
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Part II

Borel Equivalence Relations

The second half of these notes will be concerned with the descriptive set theory
of equivalence relations.

Part of our interest in Descriptive Set Theory is motivated by Vaught’s
Conjecture. Suppose L is a countable language and T is an L-theory. Let
I(T,ℵ0) be the number of isomorphism classes of countable models of T .

Vaught’s Conjecture If I(T,ℵ0) > ℵ0, then I(T,ℵ0) = 2ℵ0 .

Of course if the Continuum Hypothesis is true, Vaught’s Conjecture is true.
But perhaps it is provable in ZFC (though at the moment there is a manuscript
with a plausible counterexample due to Robin Knight).

We have seen before that Mod(T ) is a Polish space and ∼= is a Σ1
1-equivalence

relation on Mod(T ). A first hope would be to deduce Vaught’s Conjecture from a
perfect set theorem forΣ1

1-equivalence relations. This won’t work. For example,
consider the following equivalence relation on Tr.

T ∼ S ⇔ ρ(S) = ρ(T )

Then ∼ is Σ1
1. There is one equivalence class for all the ill-founded trees

and then one for each possible value of ρ. Thus ∼ has exactly ℵ1-equivalence
classes.

We will see in §8, that while there is a perfect set theorem forΠ1
1 (and hence

Borel) equivalence relations and a weaker perfect set theorem forΣ1
1-equivalence

relations.
The rest of the notes will be concerned with two special cases ofΣ1

1-equivalence
relations:

i) Borel Equivalence relations
ii) Orbit Equivalence realations, suppose G is a Polish group, X is a Borel

set in a Polish space and µ : G × X → X is a continuous action of G on A.
Let EG be the equivalence relation xEGy if and only if there is g ∈ G such that
gx = y.

It is easy to see that the orbit equivalence relations EG are Σ1
1. Of par-

ticular interest is the case where S∞ acts on Mod(T ). In this case EG is the
isomorphism equivalence relation on Mod(T ).

The study of these equivalence relations is also tied up with the study of the
dynamics of group actions and these ideas will also play a key role.

8 Π1
1-Equivalence Relations

Vaught’s Conjecture would be true if it were true that every Σ1
1-equivalence re-

lation with uncountably many classes has a perfect set of inequivalent elements.
But the example above shows this is false. On the other hand, Silver proved
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that Π1
1-equivalence relations, and in particular Borel equivalence relations, are

better behaved.

Theorem 8.1 (Silver’s Theorem) If X is a Polish space and E is a Π1
1-

equivalence relation with uncountably many classes, then there is a nonempty
perfect set P of inequivalent elements. In particular, if there are uncountably
many classes, then there are 2ℵ0 classes.

Silver’s original proof used heavy set-theoretic machinery. We will describe a
proof given by Harrington that uses the effective descriptive set theory developed
in §7.

To warm up we prove the following result that illustrates a key idea of
Harrington’s proof.

Proposition 8.2 Suppose E is an equivalence relation on N and there is a
nonempty open set U such that E∩(U×U) is meager. Then there is a nonempty
perfect set P of E-inequivalent elements.

Proof
Let E ∩ U × U =

⋃
An where each An is nowhere dense.

We build (Uσ : σ ∈ 2<ω) nonempty basic clopen sets such that:
i) U∅ ⊆ U ;
ii) Uσ ⊆ Uτ for σ ⊆ τ ;
iii) diam Uσ <

1
|σ| ;

iv) if |σ| = |τ | = n and σ 6= τ , then E ∩ (Uσ ∩ Uτ ) ∩ (A0 ∪ . . . ∪ An−1) = ∅.

For f ∈ C, let xf =
⋂
Uf |n. By contstruction if f 6= g, then xf 6E xg . Thus

there is a perfect set of E-inequivalent elements.
We choose U∅ an nonempty basic clopen subset of U .
Suppose we have constructed Uσ for all σ with |σ| = n satisfying i)–iv). Let

{(σi, τi) : i = 1, . . . k} list all pairs of distinct sequences of length n + 1. If
|σ| = n+ 1 we inductively define U iσ for i = 0, . . . k.

Let U0
σ = Uσ|n.

If σ 6= σi and σ 6= τi, then U
i+1
σ = U iσ. Otherwise, since A0 ∪ . . .∪An +1 is

nowhere dense in U ×U . We can find basic clopen U i+1
σi
⊆ U iσi and U

i+1
τi
⊆ U iτi

such that
E ∩

(
U i+1
σi
× U i+1

τi

)
= ∅.

Choose Uσ a basic closed subset of Ukσ of diameter less that 1
|σ| .

While the argument above will be the model for our proof of Silver’s theorem,
there are some significant obstacles. First and foremost, if E is aΠ1

1-equivalence
relation, there is no reason to believe that there is an open set U such that
E ∩ (U ×U) is meager. Harrington’s insight was to change the topology so that
that this is true.
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Gandy Topology

Definition 8.3 The Gandy topology on N is the smallest topology in which
every Σ1

1-set is open.

We let τG denote the Gandy topology on N .
Since there are only countably many Σ1

1-sets, the Gandy topology has a
countable basis. As we will be considering meager and comeager sets in the
Gandy topology, we first note that the Baire Category Theorem is still true for
τG.

Proposition 8.4 If U ⊆ N is nonempty ant τG-open, then U is not τG-meager.

Proof
Suppose A0, A1, . . . are τG-nowhere dense subsets of U . It is easy to construct

U = U0 ⊇ U1 ⊇ U2 ⊇ . . . a sequence of nonempty Σ1
1-sets such that Un∩An = ∅.

To prove the Lemma we need only do this in such a way that
⋂
Un 6= ∅. This

will require a bit more work.

At stage s of the construction we will have:
i) nonempty Σ1

1-sets U = U0 ⊇ U1 ⊇ U2 . . . ⊇ Us such that Ui ∩ Ai = ∅ for
all i ≤ s;

ii) recursive trees T0, T1, . . . Ts such that Ui = {x : ∃y (x, y) ∈ [Ti]};
iii) sequences σ0 ⊂ σ1 . . . ⊂ σs such that Ui ⊂ Nσi for all i;
iv) sequences ηij for i ≤ j ≤ s such that ηii ⊂ ηii+1 ⊂ ηis and there is (x, y)

such that σs ⊂ x, ηis ⊂ y and (x, y) ∈ [Ti] for all i ≤ s .

Suppose we have done this. Let x =
⋃
n∈N σn and yi =

⋃
n≥i η

i
n. Then

(x, yi) ∈ [Ti] for all i. Hence x ∈
⋂
Un and x 6∈

⋃
An.

At stage 0 we let U0 = U and σ0 = η0
0 = ∅.

At stage s+ 1 let

W = {x ∈ Us : x ⊃ σs ∧ ∃y0 . . .∃ys

s∧

i=0

(x, yi) ∈ [Ti] ∧
∧

i≤s

yi ⊃ η
i
s}.

Then W is a nonempty Σ1
1-subset of Us. Since As+1 is τG-nowhere dense, there

is V ⊂ W a nonempty Σ1
1-set such that V ∩ As+1 = ∅. Let v ∈ V . Choose

σs+1 ⊃ σs such that v ⊃ s. Let Us+1 = V ∩ Nσs+1 . Let Ts+1 be a recursive
tree such that Us+1 is the projection of Ts+1. For i ≤ s+ 1 choose zi such that
(v, zi) ∈ [Ti] and η

i
s ⊂ zi and let ηs+1

s+1 = ∅. These choices satisfy i)–iv).

We will use the fact proved in §3 that in any topological space with a count-
able basis, the Baire Property is preserved by the Souslin operation.

Let τnG denote the Gandy topology on N n. Since there is a computable bijec-
tion between N n and N , (N , τG) and (Nn, τnG) are homeomorphic topological
spaces. We have to be a little bit careful here since, for example, τ 2

G is not the

τG-product topology. We let τk,lG denote the product of (N k, τkG) and (N l, τ lG).

The topology τk+lG refines the topology τk,lG .
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Exercise 8.5 Modify the proof of 8.4 to show each topology τ k,lG also satisfies
the Baire category theorem.

We will need the following technical lemma. Let A ⊆ N 2 and let A∗ =
{(x, y, z) ∈ N 3 : (x, z) ∈ A}.

Lemma 8.6 If A is τ1,1
G -nowhere dense, then A∗ is τ2,1

G -nowhere dense.

Proof Suppose B ⊆ N 2 and C ⊆ N are Σ1
1-sets. Let B1 = {x : ∃y (x, y) ∈ B}.

Then B1 is Σ1
1. Since A is τ1,1

G -nowhere dense, there are B2 ⊆ B1 and C2 ⊆ C
nonempty such that A ∩ (B2 × C2) = ∅. Let B′ = {(x, y) ∈ B : x ∈ B2}. Then
B′ is nonempty and (B′ × C2) ∩A∗ = ∅.

Harrington’s Proof

We will prove Silver’s Theorem for Π1
1-equivalence relations. The proof will

easily relativize to Π1
1-equivalence relations.

Suppose E is a Π1
1-equivalence relation on N with uncountably many equiv-

alence classes. We say that A ⊆ N is E-small if xEy whenever x, y ∈ A. Let

U = {x : there is no E-small Σ1
1-set A with x ∈ A}.

Since there are only countably many Σ1
1-sets, U is non-empty.

Lemma 8.7 If x 6∈ U , then there is an E-small ∆1
1-set A with x ∈ A.

Proof There is an E-small Σ1
1-set B such that x ∈ B and

yEx⇔ ∀z (z ∈ B → zEy).

Thus the E-class of x is Π1
1. By Σ1

1-separation there is a ∆1
1 set A such that

B ⊆ A ⊆ {y : yEx}.

Hence A is an E-small ∆1
1-set containing x.

Corollary 8.8 U is Σ1
1.

Proof x ∈ U if and only if

∀e ((e ∈ BCrec ∧ x ∈ Brec(e))→ ∃y∃z (y, z ∈ Brec(e) ∧ x 6Ey).

This is a Π1
1-definition of U .

We now show the connection to our “warm up” argument.

Lemma 8.9 E ∩ (U × U) is τ1,1
G -meager.
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Proof
We first argue that E has the Baire property in the τ 1,1

G -topology.

Claim If A ⊆ N is Σ1
1, then there are basic open sets (Bσ : σ ∈ N<ω) such

that A = A(Bσ).
Let T ⊆ N<ω × N<ω be a tree such that A = {x : ∃y (x, y) ∈ [T ]}. Let

Bσ = {x : (x||σ|, σ) ∈ T}. Then

A =
⋃

y∈N

⋂

n∈N
By|n = A(Bσ).

The basic open sets of N × N are open in the topology τ 1,1
G , and hence

have the Baire Property, in this topology. Since the Souslin operator preserves
the Baire Property, every Σ1

1 subset of N × N has the Baire Property in the
τ1,1
G -topology.

Suppose for purposes of contradiction that E ∩ (U × U) is τ 1,1
G -nonmeager.

Since E has the Baire property there are nonempty Σ1
1-sets A,B ⊆ U , such that

E is τ1,1
G -comeager in A×B.

Let A1 = {(x0, x1) ∈ A× A : x0 6E x1}. Since A ⊆ U is a nonempty Σ1
1-set,

A is not E-small. Thus A1 is a nonempty Σ1
1-set.

Let Ci = {(x0, x1, y) : (x0, x1) ∈ A1, y ∈ B, xi 6Ey}, for i = 0, 1.

Claim Ci is τ
2,1
G -meager.

Since E is τ1,1
G -comeager in A×B, there are D0, D1, . . . τ

1,1
G -nowhere dense,

such that ⋃
Dn = {(x, y) ∈ A×B : x 6Ey}.

By Lemma 8.6, D′n = {(x0, x1, y) : (x0, y) ∈ Dn} is τ2,1
G -nowhere dense, and

Ci ⊆
⋃
D′n is τ2,1

G -meager.

Since τ2,1
G satisfies the Baire Category Theorem, There is

(x0, x1, y) ∈ (A1 × B) \ (C0 ∪ C1).

But then x0Ey, x1Ey and x0 6Ex1, a contradiction.

We now proceed as in our “warm up” to construct a perfect set of E-
inequivalent elements. We need to exercise a little care—as in the proof of
the Baire Category Theorem—to ensure that

⋂
n Uf |n are nonempty.

Let A0, A1, . . . be τ
1,1
G -nowhere dense such that

⋃
Ai = E ∩ (U × U). Let

T ⊆ N<ω × N<ω be a tree such that U = {x : ∃y (x, y) ∈ [T ]}.
We construct a family (Uσ : σ ∈ 2<ω) of nonempty Σ1

1-sets such that:
i) U∅ ⊆ U ;
ii) Uσ ⊆ Uτ for σ ⊆ τ ;
iii) if |σ| = |τ | = n and σ 6= τ , then (Uσ × Uτ ) ∩ (A0 ∪ . . . ∪ An−1) = ∅.
As in the proof of the Baire Category Theorem for τG, we also need to

take extra measures to insure that
⋂
Uf |n 6= ∅. We construct (T σ : σ ∈ 2<ω),

(µσ : σ ∈ 2<ω), and (ηστ : σ ⊆ τ ∈ 2<ω) such that:
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iv) each T σ ⊂ N<ω×N<ω is a recursive tree such Uσ = {x : ∃y (x, y) ∈ [T σ]}
and T σ ⊇ T τ for σ ⊆ τ ;

v) µσ ∈ N<ω, µσ ⊂ µτ for σ ⊂ τ , and Uσ ⊆ Nµσ ;
vi) ηστ ∈ N<ω, ηστ0 ⊂ η

σ
τ1

if σ ⊆ τ0 ⊂ τ1, and

∃x∃y x ⊃ µτ ∧ y ⊃ η
σ
τ ∧ (x, y) ∈ [T σ].

Exercise 8.10 Finish the proof of Silver’s Theorem by showing:
a) if E is a Π1

1-equivalence relation with uncountably many classes, then,
taking U as above we can find (Uσ : σ ∈ 2<ω), (T σ : σ ∈ 2<ω), (µσ : σ ∈ 2<ω),
and (ηστ : σ ⊆ τ ∈ 2<ω) satisfying i)–vi).

b) if we let xf =
⋃
µf |n, then P = {xf : f ∈ C} is a perfect set of E-

inequivalent elements.

Harrington’s original proof used forcing rather than the category argument
given above. We sketch the main idea.

Exercise 8.11 Let P = {A : A ∈ Σ1
1, A 6= ∅}.

a) If G ⊆ P is sufficiently generic, then there is x ∈ N such that

{x} =
⋂
{A : A ∈ G}.

[Hint: This just the Baire Category Theorem for τG.]
b) For x ∈ N let x = 〈x0, x1〉 ∈ N 2. If b is sufficiently generic, the so are b0

and b1.
c) Let U be as in the proof above. If (a, b) are sufficiently P × P generic

below (U,U), then a 6Eb.
d) There is a perfect set of mutually sufficiently P × P-generic elements

below (U,U).
e) Conclude Silver’s Theorem.

Σ1
1-Equivalence Relations

While Silver’s Theorem can not be generalized to Σ1
1-equivalence relations,

Burgess showed that it can be used to prove the following result.

Theorem 8.12 (Burgess’ Theorem) If X is a Polish space and E is a Σ1
1-

equivalence relation with at least ℵ2 equivalence classes, then there is a perfect
set of inequivalent elements.

Suppose E is a Σ1
1-equivalence relation. There is a continuous function

f : X ×X → Tr such that xEy if and only if f(x, y) 6∈WF.
For α < ω1, let Eα = {(x, y) : ρ(f(x, y) ≥ α}. Then Eα is Borel, Eα ⊇ Eβ

for α < β, Eα =
⋂
β<α Eβ for α a limit ordinal, and E =

⋂

α<ω1

Eα.

Let A = {α < ω1 : Eα is an equivalence relation}.
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Lemma 8.13 A is a closed unbounded subset of ω1.

Proof Suppose α0 < α1 < . . ., αi ∈ A and α = supαi. Since each Eαi is
reflexive, symmetric and transitive so is Eα. Thus A is closed.

Claim 1 For all α < ω1, there is β < ω1, such that if x 6Eαy, then y 6Eβx for all
x, y ∈ X .

Since E is an equivalence relation and Eα ⊇ E, if x 6Eαy, then y 6Ex. Let
B = {f(y, x) : x 6Eαy}. Then B is a Σ1

1 subset of WF. Thus by Σ1
1-bounding,

there is β < ω1, such that if T ∈ B, then ρ(T ) < β. Thus if x 6Eαy, then y 6Eβx.

Claim 2 For all α < ω1, there is β < ω1, such that if xEαy, yEαz and x 6Eαz,
then x 6Eβy or y 6Eβz.

Let C = {T : ∃x, y, z xEαy∧yEαz∧x 6Eαz∧ρ(T ) ≤ f(x, y)∧ρ(T ) ≤ f(y, z)}.
Then C is a Σ1

1-set of well-founded trees. Thus there is β < ω1 such that
ρ(T ) < β for all T ∈ C. If xEαy, yEαz and x 6Eαz, then either f(x, y) ∈ C or
f(y, z) ∈ C. Thus either x 6Eβy or y 6Eβz.

Let g, h : ω1 → ω1 such that g(α) is the least β < ω1 such claim 1 holds and
h(α) is the least β < ω1 such that claim 2 holds.

Given α < ω1, build α0 < α1 < . . . < ω1 such that α0 = α and αi+1 >
h(αi), g(αi). Let β = supαi.

Clearly xEβx for all x (since this is true of E).
If x 6Eβy, then x 6Eαiy for some i, thus y 6Eαi+1x. Thus y 6Eβx.
Suppose xEβy and yEβz. We claim xEβz. Suppose not. Then x 6Eαiz for

some i. But then x 6Eαi+1y or y 6Eαi+1z. Hence x 6Eβy or y 6Eβz, a contradiction.
Thus for all α < ω1, there is β ≥ α with β ∈ A. Thus A is unbounded.

We can inductively define φ : ω1 → A such that:
i) φ(0) ∈ A;
ii) φ(α + 1) > φ(α) for all α < ω1;
iii) φ(α) = supβ<α φ(β) for α < ω1 a limit ordinal.

Corollary 8.14 If E is a Σ1
1-equivalence relation, there is a sequence (Eα :

α < ω1) of Borel equivalence relations such that:
i) Eα ⊇ Eβ for α < β;
ii) Eα =

⋂
β<α Eβ, for α a limit ordinal;

iii) E =
⋂
α<ω1

Eα.

Proof Let E′α = Eφ(α). Then the sequence E′α has the desired properties.

We are now ready to prove Burgess’ Theorem. Suppose E is aΣ1
1-equivalence

relation with at least ℵ2 equivalence classes. Let Eα be a sequence of Borel
equivalence relations such that Eβ ⊆ Eα for α < β and E =

⋂
Eα. By Silver’s

Theorem, if any Eα has uncountably many classes, then there is a perfect set of
E-inequivalent elements. Thus we will assume that each Eα has only countably
many classes.
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Lemma 8.15 Suppose A ⊆ N contains at least ℵ2 E-classes. Then there is
α < ω1 and a ∈ A such that {x ∈ A : xEαa} and {x ∈ A : x 6Eα a} each
contain at least ℵ2 elements. In particular there is b ∈ A such that b 6Ea and
{x ∈ A : x 6Eα b} also contains at least ℵ2 E-classes

Proof Since each Eα has only countably many equivalence classes. For each
α < ω1 we can find aα ∈ A such that {x ∈ A : xEαaα} represents at least
ℵ2 E-inequivalent elements. If the lemma is false, then {x ∈ A : x 6Eα aα}
represents at most ℵ1-inequivalent elements. Thus

B =
⋃

α<ω1

{x ∈ A : x 6Eαaα}

represents at most ℵ1-equivalence classes. But if x, y ∈ A\B, then xEαy for all
α < ω1 and xEy. Thus A represents at most ℵ1 E-classes, a contradiction.

To finish the proof of Burgess’ Theorem we use 8.15 to build (Uσ : σ ∈ 2<ω)
such that:

i) Uσ is a nonempty Σ1
1-set with Uσ ⊆ Uτ for σ ⊆ τ such that Uσ represents

at least ℵ2 E-classes;
ii) if x ∈ Uσ

�

0 and y ∈ Uσ
�

1, then x 6Ey;

If f, g ∈ C, x ∈
⋂
Uf |n and y ∈

⋂
Ug|n, andm is least such that f(m) 6= g(m)

then x 6Eαm y and x 6E y. This would suffice if we knew that the
⋂
Uf |n 6= ∅ for

f ∈ C. We can insure this as in the proof of Silver’s Theorem.
We also build (T σ : σ ∈ 2<ω), (µσ : σ ∈ 2<ω), and (ηστ : σ ⊆ τ ∈ 2<ω) such

that:
iii) each T σ ⊂ N<ω × N<ω is a tree such Uσ = {x : ∃y (x, y) ∈ [T σ]} and

T σ ⊇ T τ for σ ⊆ τ ;
iv) µσ ∈ N<ω, µσ ⊂ µτ for σ ⊂ τ , and Uσ ⊆ Nµσ ;
v) ηστ ∈ N<ω, ηστ0 ⊂ η

σ
τ1

if σ ⊆ τ0 ⊂ τ1;
vi) for each τ

Vτ = {x ∈ Uτ : x ⊃ µτ ∧
∧

σ⊆τ

∃y ⊃ ητσ (x, y) ∈ [T σ]}

represents at least ℵ2 E-clases. In particular (µτ , η
σ
τ ) ∈ T

σ.

Suppose we have done this. For f ∈ C let xf =
⋃
n µf |n. We claim that

xf ∈
⋂
n Uf |n. Let σ = f |n. Then (µτ , η

σ
τ ) ∈ T

σ for all τ ⊇ σ. If y =
⋃
τ⊇σ η

σ
τ ,

then (xf , y) ∈ [T σ]. Thus xf ∈ Uσ. Thus {xf : f ∈ C} is a perfect set of
E-inequivalent elements.

We next sketch how to do the construction. Suppose we have defined Uτ , µτ
and (ηστ : σ ⊆ τ) such that i)–vi) hold.

Since Vτ represents at least ℵ2 E-classes, by Lemma 8.15 there is α < ω and
a0, a1 ∈ Vτ such that a0 6Eαa1 and Wi = {x ∈ Vτ : xEαai} represents at least
ℵ2 E-classes for i = 0, 1.
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If j ∈ N and ξ = (kσ : σ ⊆ τ) where each kσ ∈ N let

W j,ξ
i = {x ∈Wi : x ⊇ µτ ĵ ∧

∧

σ⊆τ

∃y ⊇ ηστ k̂σ (x, y) ∈ [T σ]}.

Since
Wi =

⋃

j,ξ

W j,ξ
i

some W j,ξ
i must represent at least ℵ2 E-classes.

Let Uτ
�

i = W j,ξ
i . Since Uτ

�

i is Σ
1
1 conditions i) and ii) are satisfied. Let

µτ
�

i = µτ ĵ, let η
σ
τ

�

i = ηστ k̂σ for σ ⊆ τ . Let T τ
�

i ⊆ T τ be a tree such that
Uτ

�

i = {x : ∃y (x, y) ∈ T τ
�

i} and let ηττ = ∅. Our choice of j, ξ insures that
i)–vi) hold.

Burgess’ Theorem has an important model theoretic corollary.

Corollary 8.16 (Morley’s Theorem) If L is a countable language and T is
an L-theory such that I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 . Indeed if φ is an
Lω1,ω-sentence and I(φ,ℵ0) > ℵ1, then I(φ,ℵ0) = 2ℵ0 .

Morley’s original proof uses the Perfect Set Theorem for Σ1
1-sets, but does

not use Silver’s Theorem. His proof is given in [11] §4.4.
Using Scott’s analysis of countable models (see [11] §2.4) it is easy to see

that isomorphism is an intersection of ℵ1 Borel equivalence relations.
If M and N are countable L-structures a ∈ Mn and b ∈ Nn we define

(M, a) ∼α (N , b) as follows:
(M, a) ∼0 (N , b) if and only if M |= φ(a) if and only if N |= φ(b) for all

quantifier free formulas;
(M, a) ∼α+1 (N , b) if and only if for all c ∈ M there is d ∈ N such that

(M, a, c) ∼α (N , b, d) and for all d ∈ N there is c ∈ M such that (M, a, c) ∼α
(N , b, d);

if α is a limit ordinal, then (M, a) ∼α (N , b) if and only if (M, a) ∼β (N , b)
for all β < α.

Exercise 8.17 Prove that ∼α is a Borel equivalence relation on Mod(L).

Proposition 8.18 If M a countable L-structure, there is α < ω1 such that if
N is countable and M∼α N , then M and N are isomorphic.

For a proof see [11] 2.4.15. It follows that
⋂
α<ω1

∼α is the isomorphism
equivalence relation. This proposition makes isomophism easier to analyze than
general Σ1

1-equivalence relations. In particular for any M there is an α such
that the ∼α-class of M is the isomorphism class. This makes the counting
argument much easier.

Exercise 8.19 Give an example of a Σ1
1-equivalance relation E on a Polish

space X and x ∈ E such that if E =
⋂
α<ω1

Eα where each Eα is a Borel
equivalence relation, then for all α < ω1 there is y ∈ X such that xEαy and
x 6Ey.
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9 Tame Borel Equivalence Relations

In this section we will look at some general results about Borel equivalence
relations. Let X be a Polish space and let E be a Borel equivalence relation on
X . If x ∈ X we let [x] denote the equivalence class of X .

We start by looking at some of the simpler Borel equivalence relations.

Definition 9.1 T ⊆ X is a transversal for E if

|T ∩ [x]| = 1

for all x ∈ X .
We say that s : X → X is a selector for E if s(x)Ex for all x ∈ X and

s(x) = s(y) if xEy.

For example, let X be the set of all f : N → R such that f is Cauchy and
let E be the equivalence relation

fEg ⇔ ∀n∃m∀k > m |f(k)− g(k)| <
1

n
.

Then the set T of constant sequences is a Borel transversal.

Lemma 9.2 Let E be a Borel equivalence relation on a Polish space X. Then
E has a Borel transversal if and only if E has a Borel-measurable selector.

Proof
(⇒) If T is a Borel transversal, let

s(x) = y ⇔ y ∈ T and xEy.

Since the graph of s is Borel, s is Borel measurable by Lemma 2.3.
(⇐) If s is a Borel measurable selector, then

T = {x : s(x) = x}

is a Borel selector.

Exercise 9.3 Suppose E is a Borel equivalence relation on X and Ω is a σ-
algebra on X containing the Borel sets. Show that more generally E has a
transversal in Ω if and only if E has an Ω-measurable selector.

Definition 9.4 Let E be an equivalence relation on X . We say that (An : n ∈
N) is a separating family for E if

xEy ⇔ ∀n (x ∈ An ↔ y ∈ An).

We say that E is tame if there is a separating family (An : n ∈ N) where
each An is Borel. More generally, if Ω is a σ-algebra on X containing the Borel
sets, we say that E is Ω-tame if there is a separating family (An : n ∈ N) where
each An ∈ Ω.

Note that if E is tame, then E is Ω-tame for any σ-algebra containing the
Borel sets.

We can give another characterization of tameness.
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Proposition 9.5 If E is a Borel equivalence relation on X, then E is tame if
and only if there is a Borel measurable f : X → C such that xEy if and only if
f(x) = f(y).

Proof
(⇒) If (An : n ∈ N) is a Borel separating family, let (f(x))(n) = 1 if and

only if x ∈ An. Then xEy if and only if f(x) = f(y).
(⇐) Let An = {x : (f(x))(n) = 1}. Then An is Borel and (An : n ∈ N) is a

separating family.

Proposition 9.5 leads us to the following key idea for comparing the com-
plexity of Borel equivalence relations.

Definition 9.6 Suppose E is a Borel equivalence relation on X and E∗ is a
Borel equivalence relation on Y . We say that E is Borel reducible to E∗ if there
is Borel measurable f : X → Y such that

xEy ⇔ f(x)E∗f(y).

In this case we write E ≤B E∗. As usual, we write E <B E∗ if E ≤B E∗ but
E∗ 6≤B E and E ≡B E∗ if E ≤B E∗ and E∗ ≤B E.

We say that E is continuously reducible to E∗ if we can choose f continuous.
In this case we write E ≤c E∗.

If X is a Polish space we let ∆(X) be the equivalence relation of equality on
X .

Exercise 9.7 Let n = {0, . . . , n− 1}. We view n and N as Polish spaces with
the discrete topology.

a) Prove that

∆(1) <B ∆(2) <B . . . <B ∆(n) <B . . . <B ∆(N) <B ∆(C).

b) Suppose X is an uncountable Polish space. Show that ∆(X) ≡B ∆(C).
c) If E is a Borel equivalence relation, then E ≤B ∆(N) or ∆(C) ≤B E.

[Hint: This is an easy consequence of Silver’s Theorem.]
d) Show that a Borel equivalence relation E is tame if and only if there is a

Polish space X such that E ≤B ∆(X).

d) Says that an equivalence relation is tame if and only if there is a Borel
way to assign invariants in a Polish space.

We next show how tameness is related to the existence of selectors. If E is
a Borel equivalence relation with a Borel selector, then the selector shows that

E ≤B ∆(X) ≤B ∆(C).

Thus E is tame.
In general tame equivalence relations need not have Borel transversals. Sup-

pose C ⊆ N × N is a closed set such that π(C) is not Borel. Let E be the
equivalence relation (x, y)E(u, v) if and only if x = u on C. Clearly π shows
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E is tame. If T is a transversal for E is a Borel uniformization of C. If T is
Borel, then, since π|T is one-to-one, by Corollary 7.22, π(C) = π(T ) is Borel, a
contradiction.

In some important cases these notions are equivalent.

Proposition 9.8 Suppose E is a Borel equivalence relation on a Polish space
X such that every E-class is Kσ. Then E is tame if and only if E has a Borel
transversal.

In particular this is true if every E-class is countable.

Proof We know that if E has a Borel transversal, then E is tame.
Suppose E is tame. There is a Borel measurable f : X → C such that

xEy ↔ f(x) = f(y). Let A = {(x, y) : f(y) = x}. By 2.3, A is Borel and

Ax = {y : f(y) = x}

is Kσ for all x ∈ C. By 7.36, A has a Borel uniformization B.
Let

T = {y : ∃x (x, y) ∈ B}.

Then T is a transversal of E and since T is the continuous injective image of
B, T is Borel.

For general E we can use uniformization ideas to say something about
transversals. Recall that C is the smallest σ-algebra containing the Borel sets
and closed under the Souslin operator A. We have shown that every C set is
Lebesgue measurable and every analytic subset of X × X can be uniformized
by a C-set (Theorem 4.25 and Exercise 5.33).

Proposition 9.9 If E is a tame Borel equivalence relation on X, then E has
a C-measurable transversal.

Proof Let f : X → C be Borel measurable such that xEy if and only if
f(x) = f(y). Let A = {(z, x) ∈ C × X : f(x) = z}. Let B ∈ C uniformize A
and let

T = {x ∈ X : (f(x), x) ∈ B}.

Then T is a C-measurable transversal of E.

What equivalence relations are not tame? There is a very natural example.

Definition 9.10 Let E0 be the equivalence relation on C defined by

xE0y if and only if ∃n∀m ≥ n x(n) = y(n).

We call E0 the Vitali equivalence relation.

The proof that E0 is not tame detours through a bit of ergodic theory.

Definition 9.11 We say that µ is a Borel probability measure on X if there
is a σ-algebra Ω on X containing the Borel sets, and a measure µ : Ω → [0, 1]
with µ(X) = 1.
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Definition 9.12 We say that A ⊆ X is E-invariant if whenever x ∈ A and
yEx, then y ∈ A. If µ is a Borel probability measure, we say that µ is E-ergodic,
if µ(A) = 0 or µ(A) = 1 whenever A is µ-measurable and E-invariant.

Definition 9.13 We say that A ⊆ X is E-atomic if there is x ∈ X with
µ([x]) > 0.

If the equivalence relation is clear from the context we will refer to E as
“atomic” rather than E-atomic.

Lemma 9.14 If E is a tame Borel equivalence relation, then there is no E-
ergodic, nonatomic Borel probability measure on X. Indeed, if µ is an E-ergodic,
nonatomic Borel probability measure on X, then E is not µ-tame.

Proof Suppose µ is an E-ergodic, nonatomic Borel probability measure on X
and E is µ-tame. Suppose (An : n ∈ N) is a µ-measurable separating family.
If xEy and x ∈ An, then y ∈ An. Thus each An is E-invariant. Since µ is
E-ergodic µ(An) = 0 or µ(An) = 1.

Let
B =

⋂
{An : µ(An) = 1} ∩

⋂
{X \An : µ(An) = 0}.

Each of the sets in the intersection has measure 1, thus µ(B) = 1. Let x ∈ B.
Since An is a separating family, [x] = B. Thus µ is atomic, a contradiction.

We need one basic lemma from probability theory.

Lemma 9.15 (Zero-one law for tail events) Let µ be the usual Lebesgue
measure on C. If A ⊆ C is E0-invariant, then µ(A) = 0 or µ(A) = 1.

Proof Since A is Lebesgue measurable, for any ε > 0, there is an open set U
such that U ⊇ A and µ(U \A) < ε.

If U ⊆ C is open, there is a tree T on 2<ω such that C \ U = [T ]. Let

S = {σ 6∈ T : ∀τ ⊆ σ τ ∈ T}.

Note that U =
⋃
σ∈S Nσ and Nσ ∩ Nτ = ∅ for σ, τ distinct elements of S.

Thus

µ(U) =
∑

σ∈S

µ(Nσ) =
∑

σ∈S

1

2|σ|
.

But Nσ and A are independent events. Thus µ(Nσ ∩ A) = µ(Nσ)µ(A) and

µ(A) =
∑

σ∈S

µ(Nσ ∩ A) =
∑

σ∈S

µ(Nσ)µ(A) = µ(U)µ(A).

It follows that either µ(A) = 0 or µ(U) = 1. Thus either µ(A) = 0 or A has
outer measure 1. In the later case µ(A) = 1 since A is measurable.

Corollary 9.16 E0 is not tame.
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Proof Let µ be Lebesgue measure on C. By the zero-one law for tail events µ
is E0-ergodic. If x ∈ C, then [x] is countable and hence measure zero. Thus µ
is nonatomic. Thus E0 is not tame.

Indeed if Ω is the σ-algebra of Lebesgue measurable subsets of C, our proof
shows that E0 is not Ω-tame. In particular E0 is not C-tame.

The first major result on Borel equivalence relations is the next theorem of
Harrington, Kechris and Louveau.4 It says that E0 is the simplest nontame
Borel equivalence relation.

Theorem 9.17 (Glimm–Effros Dichotomy) Suppose E is a Borel equiva-
lence relation on a Polish space X. Then either

i) E is tame or
ii) E0 ≤B E.

The proof of Theorem 9.17 heavily uses effective descriptive set theory. We
postpone the proof. For now we will be content giving the following corollary.

Corollary 9.18 Let E be a Borel equivalence relation on a Polish space X.
The following are equivalent:

i) E is tame;
ii) E has a C-measurable transversal;
iii) There is no Borel probability measure µ that is E-ergodic and nonatomic.
iv) E0 6≤B E.

Proof We have already shown i)⇒ ii), i)⇒ iii) and are assuming i) ⇔ iv).
ii) ⇒ i) Suppose E in not tame. Then E0 ≤B E. Let f : C → X be a Borel

reduction of E0 to E. If T is a C-measurable transversal for E, then f−1(T ) is
a C-measurable transversal for E0. But then E0 is C-tame, a contradiction.

iii)⇒ i) If E is not tame, there is f : C → X a Borel reduction of E0 to E.
Let µ be Lebesgue measure on C. We define a measure ν on X by

ν(A) = µ(f−1(A)).

Claim ν is a Borel probability measure on X .
We will only argue σ-additivity. If A0, A1, . . . ⊆ X are pairwise disjoint,

then f−1(A0),f
−1(A1), . . . are disjoint and

ν(
⋃
Ai) = µ(f−1(

⋃
Ai)) =

∞∑

i=0

µ(f−1(Ai)) =

∞∑

i=0

ν(Ai)

as desired.

If A ⊆ X is E-invariant, then f−1(A) is E0-invariant. Thus

ν(A) = µ(f−1(A) = 0 or 1
4Glimm proved this when E is the orbit equivalence relation for a second countable locally

compact group. Effros extended this to the case where E is an Fσ orbit equivalence relation
for a Polish group. The general case is due to Harrington, Kechris and Louveau [3].
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so ν.. For any x ∈ X , either f−1([x]E) = ∅ and ν([x]E = 0, or there is y ∈ C
with f(y) = x. Then f−1([x])E = [y]E0 and ν([x]E) = 0. Thus ν is an E-ergodic
nonatomic probability measure on X .

10 Countable Borel Equivalence Relations

Definition 10.1 Suppose G is a group. A map α : G×X → X is an action. If
α(g, α(h, x)) = α(gh, x) for all g, h ∈ G and α(e, x) = x for the identity element
x.

If G and X are Borel subsets of Polish spaces and the action α is Borel
measurable, we say that α is a Borel action.

When no confusion arises we write gx for α(g, x).

Definition 10.2 If α : G × X → X is a Borel action, the orbit equivalence
relation EG is given by

xEy ⇔ ∃g ∈ G gx = y.

For arbitrary Borel actions, the orbit equivalence relation is Σ1
1, but if G is

countable
xEy ⇔

∨

g∈G

gx = y.

So EG is a Borel equivalence relation.

Definition 10.3 A Borel equivalence relation E is countable if and only if every
E-class is countable.

If G is a countable group, then the orbit equivalence relation is a countable
Borel equivalence relation. Of course, there are also countable Borel equivalence
relations like ≡T and ≡hyp, Turing equivalence and hyperarithmetic equivalence,
that seem to have nothing to do with group actions. Remarkably, every count-
able Borel equivalence relation arises as an orbit equivalence relation.

Theorem 10.4 (Feldman–Moore) If E is a countable Borel equivalence re-
lation on a Borel set X, then there is a countable group G and a Borel action
of E on X such that E is the orbit equivalence relation.

Proof Consider E ⊆ X ×X . Since each section is countable, by 7.26 we can
find Borel measurable functions f0, f1, . . . such that fi : Ai → X , the fi have
disjoint graphs and E =

⋃
iGraph fi.

For i, j ∈ N let

xRi,jy ⇔ x ∈ Ai ∧ y ∈ Aj ∧ fi(x) = y ∧ fy(x) = x.

Note that E =
⋃
i,j Ri,j .
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For each i, j let Ei,j be the equivalence relation generated by Ri,j . Then
Ei,j is Borel and E =

⋃
i,j Ei,j . We claim that there is a Borel measurable

gi,j : X → X such that Ei,j -classes are the orbits of gi,j .
For each x there is at most one y such that xRi,jy and at most one z such

that zRi,jx. Thus every Ei,j -class is of one of the following forms:
1) {xi : i ∈ Z};
2) {xi : i ∈ N};
3) {x−i : i ∈ N}; or
4) {xi : i = 0, . . . , n} for some n ∈ N, where xkRi,jxk+1.
Let Bi = {x : [x] is of type i)}. Then Bi is a Borel set.
We define gi,j as follows.
1) On classes of type 1) gi,j(xk) = xk+1.
2) On classes of type 2)

gi,j(xk) =

{x1 if k = 0
xk−2 if k > 0 is even
xk+2 if k is odd.

.

3) On classes of type 3)

gi,j(xk) =

{x−1 if k = 0
x−k+2 if k > 0 is even
x−k−2 if k is odd.

.

4) On classes of type 4)

gi,j(xk) =

{
xk+1 if k < n
x0 if k = n

.

Let G be the countable group of Borel permutations of X generated by
{gi,j : i, j ≤ n}. We give G the discrete topology. The natural action of G on
X is Borel and the orbit equivalence relation is E.

Universal Equivalence Relations

Definition 10.5 We say that a countable Borel equivalence relation E is uni-
versal if E∗ ≤B E for all countable Borel equivalence relations E.

We will show how to use the Feldman-Moore Theorem to find natural uni-
versal equivalence relations Let X be a set and let G be a group if f ∈ XG and
g ∈ G define gf ∈ XG by

gf(h) = f(g−1h).

Note that

g1(g2f)(h)) = (g2f)(g
−1
1 h) = f(g−1

2 g−1
1 h) = (g1g2)f(h).

Thus (g, f) 7→ gf is an action of G on XG.
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Our main goal is to show that if F2 is the free group on two generators, then
the orbit equivalence relation for the natural action of F2 on 2F2 is universal.

If G is a countable group and X is a standard Borel set, then (g, f) 7→ gf is
a Borel action of G on XG. We let E(G,X) denote this action.

We first show that there is a universal G-action.

Lemma 10.6 Suppose G is a countable group acting on a Borel set X. Let EG
be the orbit equivalence relation. Then EG ≤B E(G, C).

Proof Let U0, U1, . . . be Borel subsets of X such that if x 6= y there is Ui such
that only one of x and y are in Ui (we say Ui separates points of X).

We view elements of CG as functions from G×N to {0, 1}. Let φ : X → CG

be the function
φ(x)(g, i) = 1⇔ g−1x ∈ Ui.

Since φ(x)(e, i) = 1 ⇔ x ∈ Ui and the Ui separate points, we see that φ is
one-to-one.

Note that

(hφ(x))(g)(i) = 1⇔ φ(x)(h−1g)(i) = 1⇔ g−1hx ∈ Ui ⇔ φ(hx)(g)(i) = 1.

Thus hφ(x) = φ(hx).
Suppose xEGy. Then there is g ∈ G such that y = hx and φ(y) = gφ(x).

Thus φ(x)E(G, C)φ(y). Moreover, if φ(x)E(G, C)φ(y), there is g ∈ G such that
φ(y) = gφ(x) = φ(gx). Since φ is one-to-one y = gx and xEGy. Thus φ is a
Borel reduction of EG to E(G, C).

Lemma 10.7 Suppose G and H are countable groups and ρ : G → H is a
surjective homomorphism then E(H,X) ≤B E(G,X) for any Borel X.

Proof Let φ : XH → XG be the function

φ(f)(g) = f(ρ(g)).

Clearly, φ is one-to-one.
If h ∈ H and ρ(h∗) = h, then

φ(hf)(g) = (hf)(ρ(g)) = f(h−1ρ(g)) = f(ρ(h−1
∗ g))

and
h∗φ(f)(g) = φ(f)(h−1

∗ g) = f(ρ(h−1
∗ g)).

Thus φ(hf) = h∗φ(f). Moreover, if there is g ∈ G such that gφ(f1) = φ(f2),
then f2 = gφ(f1) = φ(ρ(g)f1). Since φ is one to one ρ(g)f1 = f2. Thus f1EGf2
if and only if φ(f1)E(G,X)φ(f2).

For any cardinal κ let Fκ be the free group with κ generators.

Corollary 10.8 If E is a countable Borel equivalence relation, then E ≤B
E(Fℵ0 , C).
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Proof By the Feldman-Moore Theorem there is a countable group G and a
Borel action of E on X such that E is the orbit equivalence relation for the
action. By Lemma 10.6 E ≤B E(G, C). There is a surjective homomorphism
ρ : Fℵ0 → G. Thus by Lemma 10.7

E ≤B E(G, C) ≤B E(Fℵ0 , C).

We will simplify this example a bit more after a couple of simple lemmas.

Lemma 10.9 If G is a countable group and H ⊆ G, then E(H,X) ≤B E(G,X)
for any Borel X.

Proof Fix a ∈ X . Let φ : XH → G be the function

φ(f)(g) =
{
f(g) if g ∈ H
a otherwise.

Clearly φ is one-to-one.
Let h ∈ H . If g ∈ H , then

φ(hf)(g) = (hf)(g) = f(h−1g) = (hφ(f))(g).

If g 6∈ H , then h−1g 6∈ H so

φ(hf)(g) = a = (hφ(f))(g).

Since φ is one-to-one, we may argue as above that f1E(H,X)f2 if and only if
φ(f1)E(G,X)φ(f2).

Suppose a, b are free generators of F2. Then {anban : n = 1, 2, . . .} freely
generate a subgroup of F2 isomorphic to Fℵ0 . Thus E(F2, C) is also a universal
countable Borel equivalence relation.

Lemma 10.10 If G is a countable group, then E(G, C) ≤B E(G× Z, 2).

Proof We identify CG with 2G×N. Let φ : CG → 2G×Z be the function

φ(f)(g, i) =

{
f(g, i) if i ≤ 0
1 if i = −1
0 if i < −1.

Clearly φ is one-to-one.
Suppose f ∈ CG and h ∈ G. Then φ(hf) = (h, 0)φ(f). Suppose φ(f1) =

(h,m)φ(f). Then
φ(f1)(g, i) = φ(f)(h−1g, i−m)

for all g ∈ G, i ∈ Z. We claim that m = 0. Let i = −1, Then φ(f1)(g,−1) = 1.
Thus −1 − m ≥ −1 and m ≤ 0. On the other hand, let i = m − 1. Then
φ(f1)(g,m − 1) = φ(f)(h−1g,−1) = 1. Thus m − 1 ≥ −1 and m ≥ 0. Thus
m = 0. Thus

φ(f1) = (h, 0)φ(f) = φ(hf).
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Since φ is one-to-one, f1 = hf . Thus

f1E(G, C)f2 ⇔ φ(f1)E(G× Z, 2).

Theorem 10.11 If E is a countable Borel equivalence relation, then
E ≤B E(F2, 2).

Proof

E ≤B E(Fℵ0 , C)

≤B E(Fℵ0 × Z, 2) by 10.10

≤B E(Fℵ0 , 2) by 10.7

≤B E(F2, 2) by 10.9 since we can embed Fℵ0 into F2
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11 Hyperfinite Equivalence Relations

Definition 11.1 We say that a Borel equivalence relation E is finite if every
equivalence class is finite. We say that E is hyperfinite if there are finite Borel
equivalence relations E0 ⊆ E1 ⊆ . . . such that E =

⋃
En.

The equivalence relation E0 is hyperfinite. Let Fn be the equivalence relation
on C

xFny ⇔ ∀m > n x(m) = y(m).

Then E0 =
⋃
Fn and each Fn is finite.

The main goal of this section will be to give the following characterizations
of hyperfinite equivalence relations.

Theorem 11.2 Let E be a countable Borel equivalence relation. The following
are equivalent:

i) E is hyperfinite;
ii) E is the orbit equivalence relation for a Borel action of Z;
iii) E ≤B E0.

We first show that, for countable Borel equivalence relations, finite ⇒ tame
⇒ hyperfinite.

Proposition 11.3 If E is a finite Borel equivalence relation, then E is tame.

Proof There is a Borel action of a countable group G on X such that E is
the orbit equivalence relation. Without loss of generality we may assume that
X = R so we can linearly order X . Then

T = {x ∈ X : ∀g ∈ G x ≤ gx}

is a Borel transversal for E.

Proposition 11.4 If E is tame countable Borel equivalence relation, then E is
hyperfinite.

Proof There is a countable group G such that E is the orbit equivalence
relation on X . Suppose G = {g0, g1, . . .} where g0 = e. Since E is tame, there
is a Borel measurable selector s : X → X . Let

xEny ⇔ xEy and

(
x = y ∨

(
n∧

i=0

x = gis(x) ∧
n∧

i=0

y = gis(x)

))
.

Then xEns(x) if and only if x ∈ {gis(x) : i = 0, . . . , n} and if x 6Ens(x) then
|[x]En | = 1. Thus En is a finite equivalence relation and

⋃
En = E.

Since E0 is hyperfinite, the converse is false. There is a partial converse.

92



Theorem 11.5 Let E be a countable Borel equivalence relation, then E is hy-
perfinite if and only if there are tame Borel equivalence relations E0 ⊆ E1 ⊆
E2 ⊆ . . . with E =

⋃
nEn.

For a proof see [2] Theorem 5.1.
We mention a few important closure properties for hyperfinite equivalence

relations.

Definition 11.6 If E is an equivalence relation on X we say that A ⊆ X is
full for E if for all x ∈ X there is y ∈ A such that xEy.

Proposition 11.7 i) If E ⊆ F and F is hyperfinite, then E is hyperfinite.
ii) If E is hyperfinite and A ⊆ X is Borel, then E|A is hyperfinite.
iii) If E is a countable Borel equivalence relation, A ⊆ X is Borel and full

for E, and E|A is hyperfinite, then A is hyperfinite.
iv) If E is a countable Borel equivalence relation, E ≤B E∗ and E∗ is

hyperfinite, then E is hyperfinite.

Proof i) and ii) are obvious.
iii) Suppose E0 ⊆ E1 ⊆ E2 ⊆ . . . are finite Borel equivalence relations on A

such that E|A =
⋃
Ei. There is a countable group G = {g0, g1, . . . , } such that

E is the orbit equivalence relation for a Borel action of G on X . For x ∈ X , let
nx be least such that gnxx ∈ A.

Let xFny if and only if

xEy ∧ (x = y ∨ (x≤ n ∧ ny ≤ n ∧ gnxxFngnyy)).

Then Fn is a finite equivalence relation and
⋃
Fn = E.

iv) Let f : X → Y be a Borel reduction E to a hyperfinite E∗. Since E is
countable, the map f has countable fibers. Thus by 7.21, B = f(X) is Borel and
there is a Borel measurable s : B → X such that f(s(y)) = y for all y ∈ f(X).
Let A = s(B) = {x ∈ X : s(f(x)) = x}. Then A is Borel and full in E. By
ii) E∗|B is hyperfinite. But E|A is Borel isomorphic to E∗|B. By iii) E is
hyperfinite.

Z-actions

Suppose E is a Borel equivalence relation on X and <[x] is a linear order of [x].
We say that [x] 7→<[x] is Borel if there is a Borel R ⊆ X ×X ×X such that

i) R(x, y, z)⇒ (xEy ∧ xEz);
ii) R(x, y, z)⇒ y <[x] z;
iii) if xEx1 then R(x, y, z)⇔ R(x1, y, z).

Theorem 11.8 Let E be a Borel equivalence relation on X. The following are
equivalent:

i) E is hyperfinite;
ii) There is a Borel [x] 7→<[x] such that each infinite E-class has order type

Z, ω or ω∗.
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iii) There is a Borel [x] 7→<[x] such that each infinite E-class has order type
Z.

iv) There is a Borel action of Z on X such that E is the orbit equivalence
relation.

v) There is a Borel automorphism T : X → X such that E-equivalence
classes are T -orbits.

Proof
It is clear that iv) ⇔ v)
i) ⇒ ii) Let E0 ⊆ E1 ⊆ E2 ⊆ . . . be finite Borel equivalence relations such

that E =
⋃
En. We may assume that E0 is equality. We may also assume that

there is an ordering < of X .
We inductively define <[x]En

as follows.
1) <[x]E0

is trivial, since [x]E0 = {x}.
2) Suppose y, zEnx and yEn−1z, then y <[x]En

z if and only if y <[y]En−1
z.

3) Suppose y, zEnx and y 6En−1z. Let ŷ be the <[y]En−1
-least element of

[y]n−1 and ẑ be the <[z]En−1
-least element of [z]En−1 . If ŷ < ẑ, then y <[x]En

z.

Otherwise z <[x]En
y.

In other words: we order [x]En be breaking it into finitely many En−1 classes
C1, . . . , Cm. We then order the classes Ci by letting yi be the <[yi]En−1

-least

element and saying that Ci < Cj if yi < yj .
Let <[x]E=

⋃
<[x]En

. If xEny and x <[x] z <[x] y, then xEnx. It follows
that <[x] is a discrete union of finite orders. Thus <[x] is either a finite order or
has order type ω, ω∗ or Z.

We need only argue that the assignments [x] 7→<[x]En
is Borel. The only

difficulty is picking x̂ the <[x]En
-least element of [x]En . There is a countable

groups G and a Borel actions of G on X such that En is the orbit equivalence
relation of Gn. Then

y = x̂⇔ (yEnx ∧ ∀g ∈ Gn y ≤[x]En
gx).

This is easily seen to be Borel.

ii) ⇒ iii) We may assume that E is the orbit equivalence relation for the
action of a countable group G. Since

{x : ∃g ∈ G∀h ∈ G hx ≤[x] gx}

and
{x : ∃g ∈ G∀h ∈ G gx ≤[x] hx}

are Borel we can determine the order type of each class. If a class has order
type ω of ω∗ we can reorder it so that it has order type Z. For example if [x] is
x0 <[x] x1 <[x]< . . . we define a new order <∗ so that

. . . x5 <
∗ x3 <

∗ x1 <
∗ x0 <

∗ x2 <
∗ x4 < . . .

The ω∗ case is similar. This can clearly be done in a Borel way.
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iii) ⇒ iv) We define a Borel automorphism g : X → X such that E is the
orbits of g. If x is the <[x]-maximal element of [x], then [x] is the <[x]-least
element of [x]. Otherwise let g(x) be the <[x]-successor of x. Arguing as above

g is Borel. We let Z act on X by nx = g(n)x. Clearly E is the orbit equivalence
relation.

iv) ⇒ iii) Let g : X → X be a Borel automorphism such that E-classes are
g-orbits. Then X0 = {x : ∃n 6= 0 : g(n)x = x} is Borel. On X0 we can define
<[x] using < is a fixed linear order of X . Thus, without loss of generality, we
may assume that every E-class is infinite. But then we can define x <[x] y if

and only if there is an n > 0 such that g(n)x = y. Clearly this is a Z-ordering
of [x].

iii) ⇒ i) We may assume that E is an equivalence relation on C. For each
equivalence class C we define a tree TC ⊆ 2<ω by

TC = {σ ∈ 2<ω : ∃x ∈ C x ⊃ σ}.

There is a Borel automorphism g such that E-classes are g-orbits. Since

T[x] = {σ : ∃n ∈ Z : g(n)x ⊃ σ},

the function x 7→ T[x] is Borel measurable. Clearly TC is infinite. Let zC ∈ [TC ]
be the leftmost path in TC .

Claim The functions x 7→ z[x] is Borel measurable.
We define σx0 ⊂ σ

x
1 ⊂ . . . such that {τ ∈ T[x] : τ ⊇ σ

x
i } is infinite. Let σ

x
0 = ∅

and σxi+1 = σxi ĵ where j is least such that {τ ∈ T[x] : τ ⊇ σxi ĵ} is infinite.
Then z[x] =

⋃
σxi . It is easy to see that (T[x], z[x]) is Π

0
1. Thus x 7→ z[x] is Borel

measurable.

There are several cases to consider. It will be clear that deciding which case
we are in is Borel.
case 1: zC ∈ C.

For x ∈ C we define xEny if and only if x = y or there are i, j with |i|, |j| ≤ n
such that x = g(i)z[x] and y = g(j)z[x].

For m ∈ N let Cm = {x ∈ C : x|m = zC |m}.
case 2: There is an m such that Cm has a <C-least element.

Let m be least such that Cm has a least element wC . For x ∈ C, we define
xEny if and only if x = y or there are i, j with |i|, |j| ≤ n such that x = g(i)w[x]

and y = g(j)w[x].

case 3: There is an m such that Cm has a <C-maximal element.
Similar.

case 4: Otherwise.
We have C0 ⊇ C1 ⊇ C2 ⊇ . . .. Since we are not in case 1,

⋂
Ci = ∅. Since

we are not in case 2 or 3, Ci has no smallest or largest element.
We define En on C by: xEny if and only if (x ∈ Cn and x = y) or and there

is i > 0 such that g(i)x = y and g(j)x 6∈ Cn for j = 0, . . . , i.
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Clearly each En class is finite and if xEy, then xEny for all sufficiently large
n.

The i)⇔ iii) is due to Slaman and Steel. The direction iv) ⇒ i) is due to
Weiss.

It follows immediately that there is a universal hyperfinite Borel equivalence.

Corollary 11.9 If E is a hyperfinite Borel equivalence relation, then
E ≤B E(Z, C).

Recall that an action of G on X is a free action if gx 6= hx for any x ∈ X
and g 6= h. Our proof shows the following.

Corollary 11.10 If E is a hyperfinite equivalence relation on a standard Borel
space X and every E class if infinite, then E is the orbit equivalence relation
for a free Borel action of Z on X.

Reducibility to E0

Theorem 11.11 (Doughrety-Jackson-Kechris) If E is a hyperfinite Borel
equivalence relation, then E ≤B E0.

Corollary 11.12 If E is a nontame hyperfinite Borel equivalence relation then
E ≡B E0.

Proof By Theorem 9.17 E0 ≤B E and by Theorem 11.11 E ≤B E0.

By Theorem 11.8 and Lemma 10.6 every hyperfinite Borel equivalence rela-
tion is Borel-reducible to E(Z, C). Thus we may assume that E = E(Z, C).

We say that X ⊆ CZ is tame if X is E-invaraint and E|X is tame.

Lemma 11.13 Suppose X ⊆ CZ is tame, and f : CZ \ X → C is a Borel
reduction of E|Y to E0. Then E ≤B E0.

Proof Let g : X → C be a Borel measurable function such that

xEy ⇔ g(x) = g(y)

for x, y ∈ X . Since there is a perfect set of E0-inequivalent elements, there is a
continuous p : C → C such that p(x) 6E0p(y) for x 6= y. Let 〈, 〉 : C2 → C be the
ususal bijection

< x, y〉 = (x(0), y(0), x(1), y(1), . . .).

Finally let 0, 1 ∈ C denote the infinte sequences that are constantly 0 and
constantly 1, respectively.

Define f̂ : CZ → C by

f̂(x) =

{
〈p(g(x)), 0〉 if x ∈ X
〈f(x), 1〉 if x 6∈ X

.
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If x ∈ X and y 6∈ X , then f(x) 6 E0f(y), since the even part of f(x) is 0 and
the even part of f(y) is 1.

If x, y ∈ X , then

f̂(x)E0f̂(y)⇔ p(g(x))E0p(g(y))⇔ g(x) = g(y)⇔ xEy.

If x, y 6∈ X , then

f̂(x)E0f̂(y)⇔ f(x)E0f(y)⇔ xEy.

Thus f̂ is the desired reduction.

Lemma 11.14 If X0, X1, . . . ,⊆ CZ are tame, then
⋃
Xn is tame.

Proof Since each Xi is invariant we may assume that the Xi are disjoint. If fi :
Xi → C is a Borel reduction and f :

⋃
Xi → C is the function f(x) = 0i1̂ fi(x)

for x ∈ Xi, then f is a Borel reducition of E|X to ∆(C).

The two lemmas allow us to work “modulo tame sets”, i.e. if X is tame we
may ignore it and assume we are just working with E|(CZ \X).

Proof of Theorem 11.11 We will view each x ∈ CZ as a Z × N array of
zeros and ones. The columns are . . . , x−2, x−1, x0, x1, x2, . . . where xi ∈ C. If
σ ∈ (2n)n, we view σ as (σ0, . . . , σn−1) where each σi ∈ 2n. We say that σ
occurs in x at k if σi = xk+i|n for i = 0, . . . , n.

Fix σ ∈ (2n)n. Let Y be the set of all x ∈ CZ such that there is a largest k
such that σ occurs in x at k. We will argue that Y is tame. Suppose x ∈ X and
k is maximal such that σ occurs in x at k. If n ∈ Z, then (nx)i(j) = xi−n(j).
Thus k−n is the largest i such that σ occurs in nx at i. Thus Y is Z-invariant.
Let s : X → X be the function s(x) = kx where k is maximal such that σ
occurs in x at k. Then s(x) is the unique element of [x] where 0 is the largest i
such that σ occurs at i. Thus s is E-invariant and Y is tame.

Similarly, the set of x such that there is a least k such that σ occurs in x at
k is tame. By throwing out these tame Borel sets, we may restrict attention to
a Borel set X that for all σ and x ∈ X , the set of k such that σ occurs in x at
k is unbounded in both directions.

If σ ∈ (2n)n and m < n we let σ|m = (σ0|m, . . . , σm−1|m). Fix <n a linear
order of (2n)n such that if σ, τ ∈ (2n)n and σ|m <m τ |m for some m < n, then
σ <n τ .

For x ∈ X let fn(x) be the <n-least element of (2n)n occuring in x. Our
assumptions on <n, insure that fn(x)|m = fm(x) form < n. Define f : X → CN

by
f(x) = (y0, y1, . . .)

where fn(x) = (y0|n, y1|n, . . . , yn−1|n) for all n. Note that each fn and f are
E-invariant.

We say that g ∈ CN occurs in x at k if xk+i = g(i) for all i ∈ N. Let Y be
the set of x ∈ X such that f(x) occurs in x and there is a least k such that
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f(x) occurs in x at k. Then Y is Borel, E-invariant and the function s(x) = kx
where k is least f(x) occurs at k is a Borel selector. Thus Y is tame. Let W be
the set of all x ∈ X such that f(x) occurs in x at k for arbitrarily small k. If
x ∈ W , then the action of Z on [x] is periodic. Thus [x] is finite and W is tame.
Throwing out Y and W we may assume that f(x) does not occur in x for all
x ∈ X .

For x ∈ X and n ∈ N define

kx0 = 0

kx2n+1 = the least k such that k > kx2n and f2n+1(x) occurs in x at k.

kx2n+2 = the largest k such that k < kx2n and f2n+2(x) occurs in x at k.

Then
. . . ≤ kx4 ≤ k

x
2 ≤ k

x
0 < kx1 ≤ k

x
3 ≤ . . . .

Since f(x) does not occur in x, kx2n →∞ and kx2n+2 → −∞.
We make the usual identification between C and P(N) by identifying sets

with their characteristic functions. Under this identification

AE0B ⇔ A4B is finite .

Fix a bijection
p : N× (2<ω)<ω → N.

For x ∈ X and n ∈ N let
txn = |kxn+1 − k

x
n|+ 1

and let rxn ∈ (2<ω)t
x
n be (σ0, . . . , σtxn−1) where

σi = xmin{kxn,kn+1}+1|n.

This looks more confusing then it is. Suppose n is even. Then kxn < kxn+1

and rxn is just the block of the matrix x where we look take rows 0, . . . , n − 1
and columns kxn to kxn+1.

Let G(x) = {p(n, rxn) :∈ N}. From G(x), and knowing kx0 = 0, we can
reconstruct the sequence (kxi : i ∈ N) and x. Thus G is one-to-one.

Suppose G(x)4G(y) is finite. Then there is an m such that rxn = ryn for all
n > m. It follows that y is obtained by shifting x. Thus xEy.

Suppose xEy. There is m ∈ Z such that xm+i = yi for all i ∈ N. Without
loss of generality assume m > 0. Let n0 be least such that kx2n0+1 > m. Since
f(x) = f(y),

kx2n0+1 = m+ ky2n0+1.

Thus kxn = m+ kyn for all n > n0. It follows that G(x)4G(y) is finite.
Thus G reduces E to E0.
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Growth Properties

Our next goal is to show that there are countable groups G 6= Z such that every
G-action is hyperfinite.

Definition 11.15 Suppose G is a finitely generated group. We say that G
has polynomial growth if there is a finite X ⊆ G closed under inverse such that
G =

⋃
Xn and there are C, d ∈ Z such that

|Xn| ∈ O(nd)

for all n > 0.

For example Zd has polynomial growth. Suppose X = {0,±e1, . . . ,±ed}
where

ei(j) =
{
1 if i = j
0 otherwise.

Then (m1, . . . ,md) ∈ Xn if and only if
∑
|mi| ≤ n. Clearly, |Xn| ≤ (2n+1)d ∈

O(nd).
Since every finitely generated Abelian group is a quotient of Zd for some d,

every finitely generated Abelian group has polynomial growth.
The free group F2 does not have polynomial growth. Let a, b generate F2

and let X = {a, b, a−1, b−1}. Then Xn is the number of words of length at most
n and

|Xn| =
n−1∑

i=0

43i = 4(3n − 1) ∈ O(3n).

Theorem 11.16 (Gromov) Suppose G is a finitely generated group. Then G
is of polynomial growth if and only if G is nilpotent-by-finite.

We will prove that all Borel actions of finitely generated groups of polynomial
growth induce hyperfinite orbit equivalence relations. In fact we will work in
a more general context which will also allow us to understand actions of some
nonfinitely generated groups like Qd.

Definition 11.17 Let G be a countable group. We say that G has the mild
growth property of order c, if there is a sequence of finite sets K0 ⊆ K1 ⊆ K2 . . .
such that:

i)
⋃
Ki = G;

ii) 1 ∈ K0;
iii)Ki = K−1

i for all i;
iv) K2

i ⊆ Ki+1 for all i;
v) |Ki+4| < c|Ki| infinitely many i.

Lemma 11.18 If G is a finitely generated group of polynomial growth O(nd),
then G has the mild growth property of order 16d + 1.
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Proof Let X be a set of generators closed under inverse such that |Xn| ≤ Cnd

for all n > 0. Let Kn = X2n . Clearly i)—iii) hold. Since X2nX2n = X2n+1

iv)
holds. We need only argue v). Suppose not. Then there is n0 such that

|Kn+4| ≥ (16d + 1)|Kn|

for all n ≥ n0. Then
|K4k+n0 | ≥ (16d + 1)k|Kn0 |

for all k. But

|K4k+n0 | = |X
24k+n0

| ≤ C2n0d24kd = C2n0d(16d)k

and
(16d + 1)k|Kn0 | ≤ C2

n0d(16d)k

for all k. But this is clearly impossible.

Lemma 11.19 Suppose G0 ⊂ G1 ⊂ G2 ⊂ . . . are finitely generated groups with
the mild growth property of order c. Then

⋃
Gi has the mild growth property of

order c.

Proof Let Ki,0 ⊆ Ki,1 ⊆ . . . witness that Gi has the mild growth property of
order c. Let σ : N→ N× N be a bijection such that if σ(i) = (j, k), then j ≤ i.

We will build K0 ⊆ K1 ⊆ . . . ⊂ G. For notational convenience let K−1 =
{1}.

Suppose we have Ki ⊆ Gi for i < 5k. We will show how to define K5k+i for
i = 0, . . . , 4. Let

K = K2
5k−1 ∪Kσ(k) ⊆ G5k .

We can find an n such that

K ⊆ K5k,n and |K5k,n+4| ≤ c|K5k,n|.

Let K5k+i = K5k,n+i for i = 0, . . . , 4. It is easy to see that i)–iv) hold and

|K5k| ≤ c|K5k+4| for all k.

Since Qd =
⋃∞
n=1

1
n!Z

d, Qd has the mild growth property.

Theorem 11.20 (Jackson-Kechris-Louveau) Let G be a countable group
with the mild growth property. If E is the orbit equivalence relation for a Borel
action of G on a Borel space X, then E is hyperfinite.

In particular the orbit equivalence relation for any Borel action of a finitely
generated Abelian group is hyperfinite and the orbit equivalence relation for any
Borel action of Qd is hyperfinite. It is still an open question if any action of a
countable Abelian group is hyperfinite.
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The theorem will follow from several lemmas.

Definition 11.21 Let F be a symmetric, reflexive Borel binary relation on a
Borel space X . We say that F is locally finite if {y : yFx} is finite for all x. We
say that Y ⊆ X is F -discrete if ¬(xFy) for all distinct x, y ∈ Y and we say that
Y is maximal F -discrete if it is discrete and for all x ∈ X there is y ∈ Y with
xFy.

Lemma 11.22 Let F be a locally finite, symmetric, reflexive Borel binary re-
lation on X. Then there is a maximal F -discrete Y ⊆ X.

Proof Let (Xn : n ∈ N) be a family of Borel subsets of X that separates points
and is closed under finite interesections. For x ∈ X let φ(x) be the least n such
that Bn ∩ {y : yFx} = {x}. For each n, φ−1(n) is F -discrete. Let Y0 = φ−1(0)
and

Yn+1 = Yn ∪ φ
−1(n+ 1) \

⋃
j ≤ n

⋃

y∈Yn

{x : xFy}.

Each Yi is Borel and
⋃
Yi is maximal F -discrete.

Definition 11.23 Let F0 ⊆ F1 ⊆ F2 be a sequence of locally finite, symmet-
ric,reflexive Borel binary relations on X . We say that the sequences satisfies
the Weiss condition if F 2

n ⊆ Fn+1 for all n and there is a integer c such that for
all x ∈ X there are infinitely many n such that any Fn-discrete set contained
in {y : yFn+2x} has cardinality at most c.

Note that
⋃
Fi is an equivalence relation.

Lemma 11.24 If G is a group with the mild growth property and E is the
orbit equivalence relation for a Borel action of G, then there are locally finite,
symmetric, reflexive Borel binary relations F0 ⊆ F1 ⊆ . . . satisfying the Weiss
condition such that E =

⋃
Fi.

Proof Let K0 ⊆ K1 ⊆ . . . witness that G has the mild growth property of
order c. Let xFny if and only if there is g ∈ Kn with gx = y. Since 1 ∈ K0 and
g ∈ Kn if and only if g−1 ∈ Kn, Fn are locally finite, reflexive and symmetric.
Clearly

⋃
Fn = E.

We need only show it satisfies the Wiess condition. Since K2
n ⊆ Kn+1,

F 2
n ⊆ Fn+1. Let x ∈ X . Given m ∈ N there is a n > m such that |Kn+4| ≤
c|Kn|. Suppose x1, . . . , xN is an Fn+1-discrete set and xiFn+3x. There are
g1, . . . , gN ∈ Kn+3 such that gix = xi for i = 1, . . . , N .

Claim Kngi ∩Kngj = ∅ for i < j ≤ N .
Suppose a, b ∈ Kn and agi = bgj . Then

gjg
−1
i = b−1a ∈ Kn+1.

Thus
xix

−1
j = gig

−1
j ∈ Kn+1

and xiFn+1xj , a contradiction.
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If h ∈ Kn, then hgi ∈ Kn+4. Thus

N |Kn| ≤ |Kn+4| ≤ c|Kn|

and N ≤ c. Hence there are infinitely many n such that any Fn+1-discrete
subset of {y : yFn+3x} has cardinality at most c and (Fn : n ∈ N) has the Weiss
condition.

Lemma 11.25 Suppose E ⊆ E∗ are countable Borel equivalence relations. If
E is hyperfinite and every E∗-class contains finitely many E-classes, then E∗

is hyperfinite.

Proof Since E∗ is the orbit equivlance relation for a Borel action of some
countable group G. Then |[x]E∗/E| = k if and only if there are g1, . . . , gk ∈ G
such that gix 6Egjx for i 6= j and for all g ∈ G gxEgix for some i = 1, . . . , k.
Thus {x : |[x]E∗/E| = k} is Borel and, without loss of generality we may assume
that there is a fixed k such that each E∗ class contains exactly k E-classes.

Let G = {g0, g1, . . .}. We inductively define functions f1(x), . . . , fk(x) by
f1(x) = x. Let Ni+1(x) be the least n such that gnx 6Efj(x) for all j ≤ i and
fi+1(x) = gNi+1(x)x. Then

[x]E∗ =

k⋃

i=1

[fi(k)]E .

Suppose E =
⋃
En where E0 ⊆ E1 ⊆ . . . are finite Borel equivalence rela-

tions. Let xE∗ny if and only if there is σ a permutaion on {1, . . . , k} such that
fi(x)Enfσ(i)(y) for all i.

Clearly E∗n is an equivalence relation and E∗n ⊆ E∗n+1. If xE∗ny, then
xEnfi(y) for some i. Thus each E∗n class is finite. If xE∗y, then there is a
permutation σ such that fi(x)Efσ(i)(y) for all i. There is an m such that
fi(x)Enfσ(i)(y) for all i and all m > n. Thus E∗ =

⋃
E∗n is hyperfinite.

Proof of Theorem 11.20 By Lemma 11.24 we can find F0 ⊆ F1 ⊆ . . . a
sequence of locally finite, symmetric, reflexive Borel binary relations with the
Weiss condition such that

⋃
Fn = E. Let Yn be a Borel maximal Fn-disjoint

set. Let sn : X → Yn be a Borel measurable function such that sn(x)Fnx. Let
πn : X → X be sn ◦ sn−1 ◦ . . . ◦ s0 and let xEny if and only if πn(x) = πn(y).

Clearly En is an equivalence relation and En ⊆ En+1. Since each sn is
finite-to-one, πn is finite-to-one and En is a finite equivalence relation. An easy
induction shows that if xEny, then xEy. Thus E∗ =

⋃
En is a hyperfinite

equivalence relation and E ⊆ E∗. By Lemma 11.25 it suffices to show that
every E-class contains at most finitely many E∗-classes.

Suppose (Fn : n ∈ N) satisifies the Weiss condition with constant c. Sup-
pose x1, . . . , xN are E-equivalent but E∗-inequivalent. We can find arbitrarily
large n such that x1, . . . , xNFnx1 and any Fn-discrete subset of {y : yFn+2x1}
has cardinality at most c. Then πn(x1), . . . , πn(xN ) are distinct elements of
Yn and hence are Fn-discrete. Since F 2

i ⊆ Fi+1, we see, by induction, that
πn(xi)Fn+1xi. Since xiFnx1, πn(xi)Fn+2x1. Thus N < c. Thus every E-class
contains at most c, E∗-classes and E is hyperfinite.
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Ammenability

Throughout this section Γ will be a countable group.

Theorem 11.26 Suppose Γ acts freely on a standard Borel space X and µ is
a Γ-invariant probability measure on X. If the orbit equivalence relation E is
hyperfinite, then Γ is ammenable.

The proof we give was pointed out to me by Greg Hjorth. It uses one of the
many useful characterizations of ammenability.

Suppose K is a compact metric space. Let P (K) be the space of all Borel
probability measures on K. We topologize P (K) with the weakest topology
such the maps

µ 7→

∫
fdµ

are continuous for all bounded continuous f : K → R. The space P (K) is also
a compact metric space and if K is a Polish space so is P (K) (see [6] 17.E).

A continuous action of Γ on K induces an action of Γ on P (K) by

gµ(A) = µ(g−1A).

We say that µ is Γ-invariant if gµ = µ for all g ∈ Γ.

Theorem 11.27 A countable group Γ is ammenable if and only if for every
compact metric space K and every continuous action of Γ on K, there is a
Γ-invariant measure in µ(K).

Definition 11.28 Let G and H be countable groups acting on a standard Borel
space X . We say that a Borel measurable α : G×X → H is a Borel cocycle if

α(gh, x) = α(g, hx)α(h, x)

for all g, h ∈ G and x ∈ X .
If α : G×H → X is a Borel cocyle and H acts on Y , we say that f : X → Y

is α-invariant if and only if

α(g, x)f(x) = f(gx)

for all g ∈ G, x ∈ X .

Proof of Theorem 11.26
Suppose Γ acts freely on X , µ is a Γ-invariant probability measure and the

orbit equivalence relation E is hyperfinite. Since E is hyperfinite and every class
is infinite it is also the orbit equivalence relation for a Borel action of Z on X .

We define a Borel cocyle α : Z×X → Γ such that α(n, x) = g if and only if
nx = gx. Since the action of Γ is free this is a well-defined cocycle. Note that
there is also a Borel cocycle β : Γ×X → Z such that α(n, x) = g if and only if
β(g, x) = n.

Suppose Γ acts continuously on a compact metric space K. We need the
following theorem of Zimmer. This is a special case of Theorem B3.1 of [5].
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Theorem 11.29 (Zimmer) There is an α-invariant, µ-measurable x 7→ νx
from X to P (K).

Assuming Zimmer’s result we will complete the proof. We claim that there
is a Γ-invariant Borel probability measure on K.

For A ⊆ K Borel let

ν(A) =

∫

X

νx(A) dµ.

Since µ and each νx are probability measures, ν is a probability measure, we
need only show that it is Γ-invariant.

ν(gA) =

∫

X

νx(gA) dµ

=

∫

X

g−1νx(A) dµ

=

∫

X

νβ(g−1,x)x(A) dµ

=

∫

X

νg−1x(A) dµ.

But ∫

X

F (x) dµ =

∫

X

gF (x) dµ =

∫

X

F (g−1x) dµ

for any µ-measurable F : X → R and g ∈ Γ. Thus

∫

X

νx(gA) dµ =

∫

X

νg−1x(A) dµ =

∫

X

νx(A) dµ

and ν(gA) = ν(A).
Thus ν is a Γ-invariant Borel probability measure on K. It follows that Γ is

ammenable.
We sketch the proof of Zimmer’s result. Let l∞1 (X,P (K)).

104



References

[1] H. Becker and A. Kechris, The Descriptive Set Theory of Polish Group

Actions, Cambridge Univ, Press, Cambridge UK, 1996.

[2] R. Dougherty, S. Jackson and A. Kechris, The structure of hyperfinite Borel
equivalence relations, Trans. Amer. Math. Soc., 341, 193–225, 1994.

[3] L. Harrington, A. Kechris and A. Louveau, A Glimm-Effros dichotomy for
Borel equivalence relations, Jour. Amer. Math. Soc., (3) 1990, 903–928.

[4] L. Harrington, D. Marker and S. Shelah, Borel orderings, Trans. Amer.
Math. Soc. (310) 1998, 293–302.

[5] G. Hjorth and A. Kechris, Rigidity theorems for actions of product groups
and countable Borel equivalence relations, preprint.

[6] A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York,
1995.

[7] A. Kechris, Lectures on definable group actions and equivalence relations,
unpublished notes.

[8] S. Jackson, A. Kechris and A. Louveau, Countable Borel equivalence rela-
tions,

[9] T. Jech, Set Theory, Academic Press, New York, 1978.

[10] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set The-

ory, Oxford Science Pub., Oxford UK, 1985.

[11] D. Marker, Model Theory: An Introduction, Springer, New York, 2002.

[12] D. M. Martin and A. S. Kechris, Infinite games and effective descriptive set
theory, Analytic Sets, C. A. Rogers et. al. ed., Academic Press, London,
1980.

[13] D. Martin and J. Steel, A proof of projective determinacy, J. Amer. Math.
Soc, 2 (1989) 71-125.

[14] Y. Moschovakis, Descriptive Set Theory, North Holland, Amsterdam, 1980.

[15] S. M. Srivastava, A Course on Borel Sets. Springer, New York, 1998.

[16] J. Steel, On Vaught’s Conjecture, in Cabal Seminar 76–77, A. Kechris and
Y. Moschovakis, eds., Springer-Verlag, New York, 1978.

105


