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1 Introduction

We shall be interested in the structures Rexp and Cexp, the expansions of
the rings of real and complex numbers respectively, by the corresponding
exponential functions and, in particular, the problem of describing mathe-
matically their definable sets.

In the real case I shall give the main ideas of a proof of the theorem
stating that the theory Texp of the structure Rexp is model complete.

Definition 1. A theory T in a language L is called model complete if it
satisfies one of the following equivalent conditions:

(i) for every formula φ(x) of L, there exists an existential formuls ψ(x) of L
such that T |= ∀x(φ(x)↔ ψ(x));

(ii) for all models M0, M of T with M0 ⊆ M we have that M0 41 M (i.e.
existential formulas are absolute between M0 and M);

(iii) for all models M0, M of T with M0 ⊆M we have that M0 4M (i.e. all
formulas are absolute between M0 and M);

(iv) for all models M of T , the LM-theory T ∪ Diagram(M) is complete.
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This is, of course, a theorem. The actual definition that gives rise to the
name is (iv).

I shall prove that (ii) holds for T = Texp and in this case the task can be
further reduced:

Exercise 1: Suppose that all pairs of models M0, M of Texp with M0 ⊆ M
have the property that any quasipolynomial (see below) with coefficients in
M0 and having a solution in M, also has a solution in M0. Prove that Texp
is model complete.

Definition 2. Let M0 = 〈M0, ...〉 be a substructure of a model M = 〈M, ...〉
of Texp. Then a function (from Mn to M) that can be written in the form

〈x1, . . . , xn〉 7→ P (x1, . . . , xn, exp(x1), . . . , exp(xn)),

where P is a polynomial (in 2n variables) with coefficients in M0, is called a
quasipolynomial with coefficients in M0.

In fact I shall only prove, in the notation of Exercise 1, that a quasipoly-
nomial with solutions in Mn has one, 〈b1, . . . , bn〉 say, that is M0-bounded,
i.e. for some a ∈M with a > 0, we have that −a ≤ bi ≤ a for i = 1, . . . , n.

To go on to find a solution in Mn
0 requires a separate argument, which I

shall not go into in these notes. The method is fairly routine and appeared
several years before the eventual proof of the model completeness of Texp (see
[W3]). The case n = 1 of both arguments is reasonably straightforward and
serves as a good introduction to the general case:

Exercise 2 Let M0 = 〈M0, ...〉 and M = 〈M, ...〉 be models of Texp with
M0 ⊆M. Use the two step method discussed above to show that every zero
in M of a one variable (nonzero) quasipolynomial with coefficients in M0,
actually lies in M0. [That is, first show that such zeros are M0-bounded, and
then show that they lie in M0.]

Of course it is (i) in Definition 2 that is the desired conclusion, but by
establishing it via the model theoretic statement (ii) we get no information
on how to effectively find ψ(x) from φ(x). We do know that this can be done
in principle if Schanuel’s Conjecture is true, but even with this assumption
a transparent (say, primitive recursive) algorithm is still lacking.

In the complex case, where we know that model completeness fails (see
[M]), we discuss the conjecture of Zilber stating that every definable subset of
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C (in the structure Cexp) is either countable or cocountable. This property
(of an expansion of the complex field say) is called quasi-minimality. (A
structure is called just minimal if every definable subset of its domain is either
finite or cofinite. When discussing Zilber’s conjecture I shall be assuming that
the reader has studied some complex analysis as well as model theory. Many
of the arguments will combine the two. Here is an example.

Exercise 3: Let M be an expansion of the ring of complex numbers in which
an entire function f : C → C is definable. Prove that if M is minimal then
f is a polynomial.)

I shall study these rather specific topics in the more general context of
expansions of the underlying fields (real or complex) by analytic functions.

2 Analytic functions

In this section K denotes either R or C.
Let U be an open neighbourhood of a point ω ∈ Kn (for the usual topol-

ogy) and let f : U → K be an infinitely differentiable function. Then we may
form the Taylor series of f at ω:

Tf :=
∑
α∈Nn

f (α)(ω)

α!
· (x− ω)α.

It is important to realise that in the real case this is just a formal series in the
variables x = 〈x1, . . . , xn〉. It may not converge for any values of the variables
(other than ω itself) and even if it does, the sum may bear no relation to
f(x). If there exists an open neighbourhood V of ω with V ⊆ U such that
the series converges to f(x) for each x ∈ V , then we say that the function f
is analytic at ω. If it is analytic at all points ω in its domain U then we just
say that f is analytic. In the complex case, the continuous differentiability
of f on U is in fact sufficient to guarantee that f is analytic.

I now state some theorems that will be important when we come to dis-
cuss quantifier elimination and model completeness for expansions of K by
analytic functions.

Throughout these notes, ∆
(n)
K (ω; r) denotes the box neighbourhood (also

called the polydisk, in the case that K = C) centred at ω ∈ Kn and polyradius
r ∈ Rn

>0 defined by

∆
(n)
K (ω; r) := {x ∈ Kn : |xi − ωi| < ri for i = 1, . . . , n}.
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The subscript K will be omitted if it is clear from the context, and the
superscript also in the case that n = 1.

For polyradii r and s we write s < r, or s ≤ r, if corresponding coordinates
are so ordered. In the following statements we assume that n > 1 and make
the convention that primed variables are (n − 1)-tuples. Further, if y is
already designated as an n-tuple, then y′ is its initial (n− 1)-tuple.

Theorem 1 (The Implicit Function Theorem for one dependent variable).

Suppose that F : ∆
(n)
K (0; r)→ K is analytic. Suppose further that

F (0) = 0 6= ∂F

∂xn
(0).

Then there exists s ∈ Rn
>0 with s ≤ r and an analytic function

φ : ∆
(n−1)
K (0′; s′) → K such that φ(0′) = 0 and for all x′ ∈ ∆

(n−1)
K (0′; s′) we

have F (x′, φ(x′)) = 0. Further, for each such x′, φ(x′) is the only y ∈ K
satisfying |y| < sn and F (x′, y) = 0.

The uniqueness statement here is important for definability issues. It
guarantees that (at least, in the real case) if the data is definable then so
is the implicit function φ. In the following more general result the non-
singularity condition is relaxed. However, it suffers from the disadvantage
that the functions asserted to exist are not necessarily definable from the
data.

Theorem 2 (The Weierstrass Preparation Theorem). Suppose that

F : ∆
(n)
K (0; r)→ K is analytic. Suppose further that p ≥ 1 and

F (0) =
∂F

∂xn
(0) = · · · =

(
∂

∂xn

)p−1

F (0) = 0 6=
(

∂

∂xn

)p
F (0).

Then there exists s ∈ Rn
>0 with s ≤ r, analytic functions

φ1, . . . , φp : ∆
(n−1)
K (0′; s′) → K and u : ∆

(n)
K (0; s) → K such that φ1(0

′) =

. . . = φp(0
′) = 0, u does not vanish, and for all x ∈ ∆

(n)
K (0; s)

F (x) = u(x) · (xpn + φ1(x
′) · xp−1

n + · · ·+ φp(x
′)).

Theorem 2 forms the foundation for the local theory of analytic functions
and analytic sets (= zero sets of analytic functions). For the geometric theory
the non-singularity hypothesis constitutes no loss of generality:
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Exercise 4: Let F : ∆
(n)
K (0; r) → K be an analytic function. Suppose that

F (0) = 0 but that F is not identically zero. Prove that after a linear change
of coordinates (which may be taken to have an integer matrix) the hypothesis
of Theorem 2 holds (for some p ≥ 1 and possibly a smaller r).

Unfortunately, as we shall see in the next section, this is not good enough
for model theoretic considerations: one cannot just, e.g., permute variables
when one is considering a fixed projection of, say, the zero set of an analytic
function into lower dimensions. One has to have some form of preparation

theorem that deals the case that
(

∂
∂xn

)p
F (0) = 0 for all p, or, equivalently,

when the function F (0′, ·) is identically zero.

Theorem 3 (The Denef-van den Dries Preparation Theorem). Let

F : ∆
(n)
K (0; r) → K be an analytic function. Then there exist d ≥ 1, s ≤ r

and analytic functions φj : ∆
(n−1)
K (0; s′) → K, and uj : ∆

(n)
K (0; s) → K (for

j ≤ d) with the uj’s nonvanishing, such that for all x ∈ ∆
(n)
K (0; s)

F (x) =
d∑
j=0

φj(x
′) · xjn · uj(x).

Finally in this section I state the many variable version of the Implicit
Function Theorem. The role of the derivative is played by the Jacobian:

Definition 3. Let F : U × V → Km be an analytic map (i.e. its coordinate
functions are analytic functions) where U ⊆ Kn and V ⊆ Km are open sets.
Write x for the U-variables and y for the V -variables. Then the Jacobian
JF of F with respect to y is given by the determinant of the matrix(

∂Fi
∂yj

)
1≤i,j≤m

.

It is an analytic function from U × V to K.

Theorem 4 (The Implicit Function Theorem for several dependent vari-
ables). Let F : U × V → Km be as in the definition. Let 〈a, b〉 ∈ U × V be
such that F (a, b) = 0 and JF (a, b) 6= 0. Then there exists an open neighbour-
hood Ua × Vb ⊆ U × V of 〈a, b〉 and an analytic map Φ : Ua → Vb such that
for all x ∈ Ua we have F (x,Φ(x)) = 0. Further, for each such x, Φ(x) is the
unique y ∈ Vb satisfying F (x, y) = 0.
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It hardly seems worth giving a reference for the Implicit Function Theorem-
just consult your favourite analysis text. The same is almost true for the
Weierstrass Preparation Theorem though for this (and for the formal case) I
would recommend [R]. As for Theorem 3, I give a sketch of the proof in [W2]
but for more details you will have to consult the original paper [DvdD].

3 The structure Ran and its reducts

In this and the next three sections we are only concerned with the case that
K = R.

The local theory of real analytic functions and real analytic sets is cap-
tured by the definability theory of the structure Ran. This is the expansion
of the ordered ring of real numbers R̄ := 〈R; +, ·,−, 0, 1, <〉 by all r ∈ R as
distinguished elements and all restricted analytic functions:

Definition 4. Let n ≥ 1, ω ∈ Rn, r ∈ Rn
>0 and f : ∆(n)(ω; r) → R be

an analytic function. Let s be a polyradius with s < r. Then the function
f̃ : Rn → R defined by

f̃(x) =

{
f(x) if x ∈ ∆(n)(ω; s),

0 otherwise.

is called a restricted analytic function. Of course it is not analytic on Rn,
only on ∆(n)(ω; s).

Definition 5. (i) Ran := 〈R̄, {r}r∈R, {all restricted analytic functions}〉.
(ii) Tan := Th(Ran).

(iii) RD
an := 〈Ran, D〉, where D : R2 → R is defined by

D(x, y) =

{
x/y if y 6= 0 and |x| ≤ |y|,
0 otherwise.

(iv) TDan := Th(RD
an).

We have the following results.

Theorem 5 (Gabrielov). Tan is model complete.
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Theorem 6 (Denef-van den Dries). TDan admits elimination of quantifiers.

Since both the graph of the function D and its complement in R3 are ex-
istentially definable in the language L(Ran), we see immediately that the two
structures RD

an and Ran have the same definable (= existentially definable)
sets, and that Theorem 6 implies Theorem 5. The theory Tan does not have
quantifier elimination (in the language L(Ran) ), as is immediate from the
following

Exercise 5 Let A ⊆ Rn be quantifier-free definable in the language L(Ran).
Prove that there exists R ∈ Rn

>0 and a semi-algebraic set B ⊆ Rn such that
A ∩ (Rn \∆(n)(0;R)) = B ∩ (Rn \∆(n)(0;R)). Produce an example to show
that this is false with RD

an in place of Ran.

It is rather a deep fact that any subset of R2 which is quantifier free definable
in the language L(RD

an) is in fact quantifier free definable in the language
L(Ran). So your example here must necessarily have n ≥ 3. But in any case,
this argument that the two languages have different quantifier-free expressive
power is not particularly interesting as it relies on the slightly arbitrary
decision not to restrict addition and multiplication. One should really find a
truly local example:

Exercise* 6 (Osgood) Find a set A ⊆ R3 which is quantifier-free definable
in the language L(RD

an) and has the property that for no ε > 0 is A∩∆(3)(0; ε)
quantifier-free definable in the language L(Ran).

The following exercises are set with a view towards the proof of
Theorem 6.

Exercise 7 Let A ⊆ Rn be a quantifier-free definable set in the language
L(Ran). Prove that for each ω ∈ Rn there exists sω ∈ Rn

>0 such that the set
A ∩∆(n)(ω; sω) is a finite union of sets of the form

{x ∈ ∆(n)(ω; sω) : f(x) = 0, g1(x) > 0, . . . , gN2(x) > 0} (∗)

for some analytic functions f, g1, . . . , gN2 : ∆(n)(ω; sω)→ R.

Exercise 8 Let A be as in Exercise 6 and assume that n ≥ 2. Suppose
that for all ω ∈ Rn, each f and gj arising in the conclusion of Exercise 7
has the (pleasant, but not usually realised) property that either it does not
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vanish at ω, or else is regular in xn at ω. I.e. there is some p ≥ 1 (depending
on the function) such that it satisfies the hypothesis of Theorem 2. Prove
that the projection, {x′ ∈ Rn−1 : ∃xn ∈ R, 〈x′, xn〉 ∈ A}, of A onto the
first n − 1 coordinates, is quantifier-free definable in the language L(Ran).
[Hint: First consider the case when A has the form (*). As well as Exercise 7
and Theorem 2 (translated to arbitrary points in Rn), you will need Tarski’s
Theorem on the quantifier elimination for R̄. Then use Exercise 5 and the
compactness of bounded closed subsets of Rn.]

If you managed to do these, then you should not have too much trouble
with the Exercise 9. This time you will need Theorem 3 as well as the
following fact: if f : ∆(0; r) → R is an analytic function and f(0) = 0
then there is an analytic function g : ∆(0; r) → R such that for all x ∈ R,
f(x) = x · g(x).

Exercise 9 Let A ⊆ R2 be a quantifier-free definable set in the language
L(Ran). Prove that the projection of A onto the first coordinate is also
quantifier-free definable in the language L(Ran).

Having studied these special cases let us now consider the general situa-
tion, where Theorem 3 is needed and where there is no possibility of dividing
the coefficients φj by a common factor and thereby reducing to the situation
of Exercise 8 (as you should have done in solving Exercise 9).

As in Exercise 8, it is sufficient to consider sets of the form (∗), and for
simplicity I consider the projection of the set

A := {x ∈ ∆(n)(0; r) : F (x) = 0}

onto the first n− 1 coordinates. We may obviously assume that the analytic
function F : ∆(n)(0; r) → R is not identically zero and the difficult case is
when the function F (0′, ·) is identically zero.

We choose a representation of F as displayed in Theorem 3. The idea is to
divide by the largest (in modulus) of the φj’s and then appeal to Weirstrass.
To this end, let

S := {c ∈ [−1, 1]d+1 : at least one coordinate of c is 1}.

Let v = 〈v0, . . . , vd〉 be new variables, let c ∈ S and consider the analytic
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function Fc : (−1, 1)d+1 ×∆(n)(0; s)→ R given by

Fc(v, x) :=
d∑
j=0

(cj + vj) · xjn · uj(x).

Now if p is minimal such that cp 6= 0, then, by direct calculation, ( ∂
∂xn

)p(0, 0) =
p! · cp · up(0) 6= 0. So we are in the Weierstrass situation (of Exercise 8) with
respect to the variables v, x and hence we obtain a quantifier-free formula of
L(Ran), Θc(v, x

′) say, which defines the projection of the zero set of Fc onto
the 〈v, x′〉- coordinates, at least in some sufficiently small box neighbourhood
∆((d+1)+(n−1))(〈0, 0′〉; 〈tc, s′c〉) of 〈0, 0′〉.

Now S is compact. So there is a finite set σ ⊆ S such that S is covered
by the collection {∆(d+1)(c; tc) : c ∈ σ}. Choose τ ′ ∈ Rn−1

>0 such that τ ′ < s′c
for all c ∈ σ.

It follows that a point x′ ∈ ∆(n−1)(0; τ ′) lies in our projection of A (at
least, for sufficiently small xn-one has to do another compactness argument
to cover all xn ∈ [−rn, rn]) if and only if:

either φj(x
′) = 0 for j = 0, . . . , d,

or else for some j0 with 0 ≤ j0 ≤ d, φj0(x
′) 6= 0,

and |φj0(x′)| ≥ |φj(x′)| for j = 0, . . . .d,

and for some c ∈ σ we have |φj(x′) − cj · φj0(x′)| < (tc)j · |φj0(x′)| for
j = 0, . . . , d,

and Θc(h0(x
′), . . . , hd(x

′), x′) holds, where hj(x
′) denotes the term

D(φj(x
′), φj0(x

′))− cj of L(RD
an) for each j = 0, . . . , d.

Now, you will have noticed that we started with a quantifier-free for-
mula of L(Ran) and we ended up with a quantifier-free formula of L(RD

an),
so it would appear that we cannot proceed further to eliminate more ex-
istentially quantified variables. However, this is easily dealt with. One
first proves a generalization of Theorem 3 in which xn is replaced by a
tuple xn, . . . , xn+m−1 of variables. This is done by induction on m, the
representation of F (x′, xn, . . . , xn+m−1) looking the same as in Theorem 3
except that the subscript j becomes a multi-index α ∈ Nm with |α| ≤
d. And now the point is that in successively eliminating the quantifiers
∃xn+m−1,∃xn+m−2, . . . ,∃xn (as above) we apply the D function to terms in-
volving the variables x′ only. There is one extra complication which I should
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point out, but about which I will not go into detail, namely that, even after
dividing by the largest φα(x′), we might not have guaranteed the regular-
ity of F with respect to any of the variables xn, . . . , xn+m−1. This can be
achieved, however, by a suitable (polynomial) invertible transformation of
these variables (leaving x′ fixed).

For our purposes in these notes, one of the most important consequences
of Theorem 6 is contained in the following

Exercise 10 Prove that every subset of R that is definable in the language
L(Ran) is a finite union of intervals and points.

It might now hardly seem worth commenting on the (very difficult) proof
of Theorem 5. However, apart from pointing out the fact that [G] appeared
twenty years before [DvdD], it turned out that Gabrielov’s arguments were
much more suited to dealing with reducts of Ran than those of Denef-van
den Dries and in [G2] he proves the following result.

Theorem 7 (Gabrielov). Let R̃ be a reduct of Ran having the property that

for each restricted analytic function f̃ appearing in its signature, and for

each j, ∂̃f
∂xj

also appears. (Or, more generally, that ∂̃f
∂xj

is the interpretation

of some term of the language L(R̃).) Then Th(R̃) is model complete in its

language L(R̃).

The reason that the Denef-van den Dries method fails here is essentially
due to the remark I made just before the statement of the Weierstrass Prepa-
ration Theorem. To see the extent to which their method can be applied to
reducts consult [vdD2].

The importance of Theorem 7 for us is the

Corollary 1. Let Rrexp:= 〈R̄; exp � (0, 1)〉 where exp : R → R, x 7→ ex is
the usual exponential function. Then Th(Rrexp) is model complete. So is the
theory of the structure Rrexp,rtrig:= 〈R̄; exp � (0, 1), sin � (0, 2π), cos � (0, 2π)〉.

4 Some topics in o-minimality

Let M = 〈M,<, . . .〉 be a structure, where< is a dense, total ordering without
endpoints of its domain M . Then M is called o-minimal if every parametri-
cally defianable subset of M is a finite union of open intervals and points.
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Clearly any reduct of an o-minimal structure is o-minimal, so we imme-
diately deduce the following fact from Exercise 10.

Corollary 2. Any reduct of Ran, in particular Rrexp and Rrexp,rtrig, is o-
minimal.

In this section I shall be listing those properties of o-minimal structures
that I shall be using in the sequel. Unless otherwise stated, all proofs may be
found in the excellent book [vdDb]. From now on, notions of definability are
always with reference to the structure under consideration and are without
parameters. We thereby achieve uniformity in parameters in our results.

Theorem 8 (The Monotonicity Theorem). Let M = 〈M,<, . . .〉 be an o-
minimal structure and suppose that f : M →M is a definable function. Then
there are points a1 < a2 < . . . < ap in M such that (setting a0 = −∞ and
ap+1 = +∞) for each j = 0, . . . , p, f is either constant or strictly monotone
and continuous (for the order topology) on the interval (aj, aj+1).

Exercise 11 Prove that the aj’s in Theorem 8 may be taken to be definable
(even without knowing the proof of Theorem 8).

Theorem 9 (Existence of definable Skolem functions). Let M =
〈M,<,+, 0, . . .〉 be an o-minimal structure where 〈M,<,+, 0〉 is an ordered
abelian group. Then Th(M) admits definable Skolem functions. This means
that for any definable set A ⊆Mn+1, there exists a definable function
f : Mn → M such that for all a ∈ Mn, if there is some b ∈ M such that
〈a, b〉 ∈ A, then 〈a, f(a)〉 ∈ A.

Henceforth, all o-minimal structures will be assumed to be equipped with
an ordered abelian group structure as in Theorem 9.

Let us fix one such, M = 〈M,<,+, 0, . . .〉 say.

It follows from Theorem 9 that for any subset S of M , Dcl(S) is the

domain of an elementary substructure of M which we denote by D̃cl(S).
Here Dcl(S) denotes the definable closure of S:

Dcl(S) := {f(s1, . . . , sn) : n ≥ 0, s1, . . . , sn ∈ S, f a definable function}.

By convention, a 0-place definable function is a definable element of M ,

so D̃cl(∅) is an isomorphic copy of the unique prime model of Th(M).
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I should mention at this point the foundational theory of o-minimality
developed by Pillay and Steinhorn in [PS] and [KPS]. They prove the Cell
Decomposition Theorem which has the consequence that any structure el-
ementarily equivalent to an o-minimal structure is itself o-minimal. (This
certainly does not follow from the definition which involves sets defined with
parameters.) I do not need these results explicitly in these lectures (though
a slightly more detailed account would certainly need to discuss them) so I
return to properties of the Dcl(·) operator.

Exercise 12 Prove that Dcl(·) is a pre-geometry on M . [Hint: all is clear
apart from Exchange. For this use Theorem 8 and Exercise 11.]

So by Exercise 12 we may assign a cardinal number (usually finite in our
applications) to any subset S ⊆M :

rank(S) := max{|I| : I ⊆ S, I is Dcl(·)-independent}.

Thus, for example, rank(M), also written rank(M), is the smallest num-
ber of elements of M required to generate M under the definable functions.
Exercise 12 guarantees that this is well-defined in the sense that any two
minimal sets of generators have the same cardinality.

Exercise 13 Let M = 〈M,<,+, ·, 0, 1〉 be a real closed, ordered field (i.e.
M ≡ R̄). Prove that for any S ⊆ M , rank(S) is the transcendence degree
(over Q) of the subfield of M generated by S.

5 Some valuation theory for o-minimal struc-

tures

Let R̃ be an o-minimal expansion of R̄ and let M ≡ R̃. The set of finite and
infinitesimal elements of M (= the domain of M) are defined, respectively,
by:

Fin(M) := {a ∈M : |a| < N for some N ∈ Q},

µ(M) := {a ∈M : |a| < q for all q ∈ Q>0},

where we have identified Q with the prime subfield of M.
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Exercise 14 Prove that Fin(M) is (the domain of) a subring of M and that
µ(M) is the unique maximal ideal of Fin(M).

Thus Fin(M)/µ(M) is a field, called the residue field of M, and is denoted
Res(M).

Exercise 15 Let S be the collection of all elementary substructures A =
〈A, . . .〉 of M such that A ⊆ Fin(M). Prove that S satisfies the hypotheses
of Zorn’s Lemma (in particular, that S 6= ∅). Deduce that there exists
A0 = 〈A0, . . .〉 ∈ S such that for each a ∈ Fin(M), there exists a unique
b ∈ A0 (the “standard part” of a) such that |a− b| ∈ µ(M).

Thus, the field Res(M) can be expanded to an L(M)-structure in such a
way that it has an isomorphic copy, R(M) say, in M (contained in Fin(M))
and, further, we have that R(M) 4 M. We call rank(R(M)) the residue
rank of M and denote it by resrank(M).

Obviously resrank(M) ≤ rank(M) and we wish to investigate the defi-
ciency rank(M)− resrank(M), which, in some sense, measures the number
of “degrees of infinity” in M \Fin(M). The following is completely standard
algebra, and not particularly special to the situation here.

Exercise 16 Prove that there exists a unique (up to isomorphism) ordered Q-
vector space 〈Γ, <,+, 0〉 (called the value group of M) and a unique surjective
function ν : M\{0} → Γ (called the valuation map of M) having the following
properties.

For all a, b ∈M \ {0},

(i) ν(a · b) = ν(a) + ν(b);

(ii) ν(a+ b) ≥ min{ν(a), ν(b)} ;

(iii) ν(a) = 0 if and only if a ∈ Fin(M) \ µ(M).

[Hint: Fin(M) \µ(M) is a multiplicative subgroup of M \ {0}. Then Γ is the
quotient group written additively.]

We continue to use the notation of Exercise 16 throughout this section.

Exercise 17 Prove that if a, b ∈M\{0} and ν(a) > ν(b), then ν(a+b) = ν(b).
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You should now be able to establish the following classical inequality.

Exercise 18 Let a1, . . . , an ∈ R(M) be algebraically independent (over Q)
and let b1, . . . , bm ∈ M \ {0} be such that ν(b1), . . . , ν(bm) are linearly inde-
pendent (over Q) elements of Γ. Prove that a1, . . . , an, b1, . . . , bm are alge-

braically independent (over Q). Deduce that in the case R̃ = R̄ (see exercise
13), we have the inequality

rank(M) ≥ resrank(M) + dimQ(Γ).

The main step in the proof of the model completeness of Texp is to gen-

eralize Exercise 18 to the case that R̃ is Rrexp. In fact we have the following

Theorem 10 (The valuation inequality). Let R̃ be any reduct of Ran that

expands R̄. Then for any M ≡ R̃ with rank(M) finite, we have the inequality

rank(M) ≥ resrank(M) + dimQ(Γ).

I can say very little here about the proof of Theorem 10 except that one
uses the method of Exercise 18 after approximating analytic functions by
polynomials via their Taylor expansions. Various proofs of Theorem 10 now
exist in the literature for much wider classes of o-minimal structures, and I
refer you to [S] for a very readable account.

Actually, I will need a relativized version of Theorem 10 which follows
fairly easily from it. I now assume that Th(M) is model complete.

Firstly, and in general, for A = 〈A,<, . . .〉 and B = 〈B,<, . . .〉 o-minimal
structures in the same language with A 4 B, let us write rankA(B), the rank
of B over A, for the rank (as defined above) of the expansion 〈B, a〉{a∈A} of
B, where each element of A is distinguished.

To return to situation at hand, let M0 = 〈M0, <, . . .〉 be an elementary
substructure of M. Then one may easily modify the Zorn’s Lemma argument
of Exercise 15 to show that the copies of the residue fields may be chosen in
such a way that R(M0) 4 R(M). (Recall that both are models of Th(M),
and it is at this point that one needs model completeness.) So we may define
resrankM0(M) := rankR(M0)(R(M)).

One can also easily show that Γ0 (the value group of M0) is a sub-Q-vector
space of Γ.

Then in this situation we have
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Theorem 11 (The relativized valuation inequality). If rankM0(M) is finite
then

rankM0(M) ≥ resrankM0(M) + dimQ(Γ/Γ0).

6 The model completeness of Texp

In this section I give a proof of the model completeness of Texp, at least
insofar as I indicated after the statement of Definition 2 in section 1. But let
us proceed for the moment as if we are trying to establish the hypotheses of
Exercise 1 as stated.

So consider models M0, M of Texp with M0 ⊆ M. Let their domains be
M0 and M respectively and suppose we are given a quasipolynomial
f : Mn → M say, with coefficients in M0 and having a zero, b say, in Mn.
The first step in finding such a zero in Mn

0 is a reduction to the non-singular
case:

Lemma 1. It is sufficient to show that whenever F : Mn → Mn is a
quasipolynomial map with coefficients in M0, and b ∈ Mn is a non-singular
solution to the equation F (x) = 0, i.e.

F (b) = 0 and JF (b) 6= 0,

then b ∈M0.
(Here, JF is the Jacobian with respect to all the variables x = x1, . . . , xn.)

There is now a simpler argument than that given in [W] of a much more
general result than this, and I refer you to [JW] for the proof of this lemma.

It is perhaps overdue for me also to mention Khovanski’s paper [K]. There
it is shown that quasipolynomial maps as in the lemma have only finitely
many non-singular zeros. Khovanski only works over the reals, but his (com-
pletely effective) upper bound for the number of such zeros is independent of
any parameters occuring as coefficients, and hence one obtains the finiteness
in all models of Texp.

Now let n ≥ 1 be given and assume, for a contradiction, that we have
a counterexample, i.e. for some quasipolynomial map F : Mn → Mn (with
coefficients in M0) and some b ∈ Mn, we have F (b) = 0 and JF (b) 6= 0
but b /∈ Mn

0 . Suppose further that these have been chosen to maximise
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the number r of coordinates of b that lie in Fin(M). We may assume that
these are the first r coordinates, b1, . . . , br, of b. Choose N ∈ N such that
−N < bj < N for j = 1, . . . , r.

Case 1 r = n.

Now we may consider M0 and M as models of Trexp (:= Th(Rexp)) by
simply restricting their exponential functions to (0, 1). Let us call these
structures M∗0 and M∗ respectively. Since the exponentiation of M restricted
to the interval (−N,N) is definable in M∗, the map F restricted to (−N,N)n

is definable in M∗ using parameters from M∗0, and we have, by Khovanski’s
theorem, that

M∗ |= ∃=kx ∈ (−N,N)n (F (x) = 0 ∧ JF (x) 6= 0)

for some k ≥ 1.
But M∗0 4M∗ (by Corollary 1) and hence

M∗0 |= ∃=kx ∈ (−N,N)n (F (x) = 0 ∧ JF (x) 6= 0),

whence b ∈Mn
0 , a contradiction.

Case 2 r < n.

Then b1, . . . , br ∈ Fin(M) and br+1, . . . , bn ∈M \ Fin(M).
In fact, it is easy to see that if C is an (n− r)× (n− r) invertible matrix

with rational entries, and γ ∈Mn−r
0 , then the n-tuple

〈b1, . . . , br, γ+ 〈br+1, . . . , bn〉C〉 also constitutes a counterexample (for a suit-
ably transformed map F ).

Hence, in particular, for all γ ∈ M0 and qr+1, . . . , qn ∈ Q (not all zero)
we have

γ + qr+1 · br+1 + · · ·+ qn · bn /∈ Fin(M) (∗)

(by the maximality of r).

We now work in the theory Trexp and consider its models M∗0 and M∗
as discussed in Case 1. Let M1 be the definable closure in M∗ of the set
M0 ∪ {b1, . . . , bn, exp(br+1), . . . , exp(bn)} and let M∗1 be the elementary sub-
structure of M with domain M1.

Now each coordinate function Fj of the map F has the form

Fj : Mn →M, 〈x1, . . . , xn〉 7→ Pj(x1, . . . , xn, exp(x1), . . . , exp(xn))
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where Pj is a polynomial (in 2n variables) with coefficients in M0. Let us
consider the function Gj given by

Gj : Mn+(n−r) →M, 〈x1, . . . , xn, y〉 7→ Pj(x1, . . . , xn, exp(x1), . . . , exp(xr), y),

where y = yr+1, . . . , yn

Notice that these functions are definable in M∗ (with parameters from
M0) if the variables x1, . . . xr are constrained to the interval (−N,N).

It is immediate that 〈b1, . . . , bn, exp(br+1), . . . , exp(bn)〉 is a zero of the
map G := 〈G1, . . . , Gn〉 : Mn+(n−r) → Mn and one may easily check, by
direct calculation, that it is a non-singular zero with respect to some sub-
n-tuple of the variables x1, . . . , xn, yr+1, . . . , yn. It now follows from Kho-
vanski’s theorem that the coordinates of the corresponding sub-n-tuple of
〈b1, . . . , bn, exp(br+1), . . . , exp(bn)〉 are all contained in the definable closure
(over the parameters M0) of the remaining n− r coordinates. (We are using
here the fact that in totally ordered structures, “algebraic closure = definable
closure”.). We conclude that rankM∗

0
(M∗1) ≤ n− r.

However,
ν(exp(br+1)), . . . , ν(exp(bn))

are Q-linearly independent elements of the vector space Γ∗1/Γ
∗
0 (where Γ∗1 and

Γ∗0 denote the value groups of M∗1 and M∗0 respectively). Since if not, then

β · exp(qr+1br+1 + . . .+ qnbn) ∈ Fin(M∗1) \ µ(M∗1)

for some β ∈M0, and some qr+1, . . . , qn ∈ Q (not all zero).
We may assume that β > 0 and since M0 |= Texp, there is some γ ∈ M0

such that exp(γ) = β. But then

exp(γ + qr+1br+1 + . . .+ qnbn) ∈ Fin(M∗1) \ µ(M∗1)

whence
γ + qr+1br+1 + . . .+ qnbn ∈ Fin(M)

which contradicts (∗).
So dimQ(Γ∗1/Γ

∗
0) ≥ n− r.

Since we have already established that rankM∗
0
(M∗1) ≤ n − r, it follows

from Theorem 11 that ResrankM∗
0
(M∗1) = 0, so

R(M∗0) = R(M∗1),
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and that
ν(exp(br+1)), . . . , ν(exp(bn))

generate Γ∗1 (as a Q-vector space) over Γ∗0.

It now takes a very easy valuation theoretic argument (together with
the fact that M0 is closed under taking logarithms of positive elements) to
establish the following claim, and I leave the details of the proof to you.

Claim For all nonzero a ∈ M∗1 there exists γ ∈ M0 and a homogeneous
linear form with rational coefficients λ : Mn−r → M and an infinitesimal
ε ∈ µ(M∗1) such that

a = (1 + ε) · exp(γ + λ(br+1, . . . , bn)).

In order to obtain our contradiction we use the claim in the obvious way
to define inductively a sequence a1, a2, . . . of elements of M1, where a1 is an
arbitrary positive element of M1 \ Fin(M∗1), and, for each j ≥ 1,

(i) aj = (1 + εj) · exp(aj+1) for some εj ∈ µ(M1), and

(ii) aj+1 = γj+1 + λj+1(br+1, . . . , bn) for some γj+1 ∈ M0 and some homoge-
neous linear form λj+1 with rational coefficients.

It is clear that 〈aj : j ≥ 1〉 is a decreasing sequence of positive elements
of M1 and for all l,m, j ≥ 1,

l < amj+1 < aj (∗∗).

Now since the Q-vector space of (n − r)-variable rational linear forms
is finite dimensional it follows from (ii) that for some p ≥ 1 and rational
numbers q1, . . . , qp (not all zero), we have

q1a1 + · · ·+ qpap ∈M0.

Thus by (∗∗) there certainly exists some γ ∈ M0 such that 0 < aj0 < γ,
where j0 is the least j such that qj 6= 0. If j0 > 1 we may set j = j0 − 1 in
(i) and (using the fact that M0 is closed under exponentiation) deduce that
there also exists some γ′ ∈ M0 such that 0 < aj0−1 < γ′. Continuing in this
way we eventually arrive at some γ′′ ∈ M0 such that 0 < a1 < γ′′. Since a1

was an arbitrary positive infinite element of M1 this shows that every element
of M1 is M0-bounded. This is true, in particular, for b1, . . . , bn and this is all
that I claimed we would show here.
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7 The complex exponential field and analytic

continuation for definable functions

We now consider the case that K = R.

As mentioned in the introduction, this section is motivated by the conjec-
ture of Zilber stating that every Cexp-definable subset of C is either countable
or co-countable. As far as I know, even sets of the form

{z ∈ C : ∃w ∈ C F (z, w) = 0} (∗)

where F (z, w) is a (two variable) term of the language L(Cexp) have not been
shown to satisfy Zilber’s conjecture.

Our approach to this particular case is as follows. Let us suppose that

F (0, 0) = 0 6= ∂F

∂w
(0, 0).

Then by the Implicit Function Theorem there exists ε > 0 and a complex
analytic function φ : ∆(0; ε) → C such that for all z ∈ ∆(0; ε), we have
F (z, φ(z)) = 0. We must show that the set (∗) is co-countable and it seems
reasonable to conjecture that the function element φ has an analytic contin-
uation (which necessarily preserves the equation F (z, φ(z)) = 0) to all but
countably many points in the complex plane. Indeed, one can fairly easily
show that if one proves a suitably generalized version of this analytic con-
tinuation conjecture (in which w is allowed to be an n-tuple of variables and
F an n-tuple of terms in the 1 + n variables z, w, and where the countably
many exceptional points have a certain specific form) then Zilber’s conjec-
ture (even for subsets of C defined by formulas of the language Lω1,ω(Cexp))
would follow.

Let us now consider issues of definability. The approach to Zilber’s con-
jecture suggested above transcends L(Cexp)-definablility (at least, if Zilber’s
conjecture is true!): one cannot define restricted functions φ : ∆(0; ε) → C
without the resource of the real line and the usual metric. So we follow
the Peterzil-Starchenko idea of doing complex analysis definably in a suit-
able o-minimal structure via the usual identifications C ∼ R⊕ iR ∼ R× R.
(Actually, we will only be considering a fixed o-minimal expansion R̃ of the
ordered field of real numbers R, so many of the subtleties of [PeS] will not
be required here.)
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In order to study the complex exponential function in this way we require
an o-minimal structure in which it is definable (considered as a function from
R× R to R× R).

Exercise 19 Prove that there is no such structure.

However, Miller and van den Dries generalized the proof of the model
completeness of Texp to show that the expansion Ran,exp of the structure
Ran by the (unrestricted) real exponential function is model complete and
o-minimal (see [vdDM]).

Exercise 20 Prove that for any N ∈ N the restriction of the complex expo-
nential function to the strip {x + iy ∈ C : −N < y < N} is definable in the
structure Ran,exp.

Exercise 21 Prove that any (analytic) branch of the complex logarithm
function restricted to the slit plane {x+ iy ∈ C : y 6= 0 or x > 0} is definable
in the structure Ran,exp.

So some useful complex analytic functions are definable in the structure
Ran,exp. For many others see [W4].

To return to the approach to Zilber’s conjecture suggested above, I pro-
pose the program of investigating analytic continuation for functions defin-
able in the structure Ran,exp and I conclude these notes with a first step in
this direction.

We first require the analytic cell decomposition theorem for Ran,exp (see
[vdDM]). Since we only need it for subsets of the complex plane I state it only
in the two (real) dimensional case. Definability here, and for the remainder
of these notes, is with reference to the structure Ran,exp.

Theorem 12 (van den Dries-Miller). Let A be a finite collection of definable
subsets of R2. Then there are points a1 < a2 < · · · < ap in R and, for each
j = 0, . . . , p, a finite collection Fj of definable (real) analytic functions with
domain (aj, aj+1) (where we have set a0 = −∞ and ap+1 = ∞ and we also
include the two functions with constant value ∞, −∞ in Fj) such that

(i) for f , g distinct functions in Fj, either for all x ∈ (aj, aj+1), f(x) < g(x)
(written f ≺ g) or else for all x ∈ (aj, aj+1), f(x) > g(x);
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(ii) for each A ∈ A and each f ∈ Fj, either graph(f) ⊆ A or else
graph(f) ∩ A = ∅;
(iii) for each f, g ∈ Fj with f ≺ g and for which there is no h ∈ Fj with
f ≺ h ≺ g, we have that either (f, g) ⊆ A or else (f, g) ∩ A = ∅, where
(f, g) := {〈x, y〉 ∈ R2 : aj < x < aj+1, f(x) < y < g(x)}.

The sets graph(f) and (f, g) mentioned above are called 1-cells and 2-
cells respectively and the collection of all of them is called an analytic cell
decomposition compatible with A. (Strictly speaking we should also include,
for each j = 0, . . . , p, a compatible partition of the ordinates {aj} × R into
open intervals and points.)

The results contained in the following two exercises will be required for
the proof of our analytic continuation theorem. They both require a little o-
minimal theory, and the second some elementary complex analysis (Cauchy’s
Theorem) as well.

We use the notation X̄ to denote the closure of a set X ⊆ C in the usual
topology on C.

Exercise 22 In the notation of Theorem 12, suppose that A ∈ A and that
A is a (nonempty) regular open set (i.e. A is the interior of its closure in R2).
Prove that there exists a finite set S ⊆ Ā \ A with the property that for all
a ∈ Ā \ (A ∪ S), there is a unique 2-cell, Va say, in the cell decomposition
such that Va ⊆ A and a ∈ V̄a \ Va.

Exercise 23 Let F : C̄ → C be a definable continuous function, where
C ⊆ C is an analytic 2-cell, and assume that F has infinitely many zeros.
Suppose further that F � C is (complex) analytic. Prove that F is identically
zero.

Theorem 13. Let U ⊆ C be a definable, regular open set and let φ : U → C
be a definable (complex) analytic function. Then there exists a finite set
T ⊆ Ū \U such that for all w ∈ Ū \ (T ∪U), φ has an analytic continuation
to some open set containing w

Proof. Consider an analytic cell decomposition compatible with the collec-
tion A = {U, {z ∈ U : |φ(z)| ≤ 1}}. If C is a 2-cell of this decomposition and
C ⊆ U then either |φ(z)| ≤ 1 throughout C or else |φ(z)| > 1 throughout C.
Now to prove the theorem it follows from Exercise 22 that we may assume
that U is in fact such a 2-cell (exercise). Say

C = {x+ iy : a < x < b, f(x) < y < g(x)},
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where f, g : (a, b)→ R are definable real analytic functions.
I show that φ has an analytic continuation across all but finitely many

points of graph(g) (assumed 6=∞), other cases being dealt with similarly.

Consider first the case that φ is bounded on C. Then by o-minimality
it follows that φ has a continuous extension, φ̄ say, to all but finitely many
points of graph(g), and by a further use of analytic cell decomposition we
may assume that φ̄ ◦ g is real analytic at all but finitely many points of
(a, b). So, avoiding such points, let x0 ∈ (a, b) and choose ε > 0 so that
a < x0 − ε < x0 + ε < b and, further, so that the (real) Taylor series of
both g and φ̄ ◦ g at x0 define complex analytic functions G : ∆(x0; ε) → C
and Φ : ∆(x0; ε) → C respectively. We have to show that φ has an analytic
continuation to some open set containing g(x0).

Define the complex analytic function H : ∆(x0; ε) → C by H(z) :=
z + iG(z).

Since the Taylor coefficients of G are real it follows that H ′(x0) 6= 0 and
hence (by reducing ε if necessary) that H is a holomorphic homeomorphism
from ∆(x0; ε) onto an open set, V say. Further, H maps the interval (x0 −
ε, x0 + ε) onto graph(g � (x0− ε, x0 + ε)). We may also suppose, by reducing
ε further, that H is definable (its real and imaginary parts being restricted
analytic functions (when extended by 0) of two real variables).

Now consider the function

Ψ := φ− Φ ◦H−1 : (C ∪ graph(g � (x0 − ε, x0 + ε))) ∩ V → C.

By our construction Ψ is definable, continuous, holomorphic on C ∩ V , and
identically zero on the curve graph(g � (x0 − ε, x0 + ε)) which obviously
contains infinitely many points of the boundary of C ∩ V . It now easily
follows from Exercise 23 that Ψ is identically zero throughout (C∪graph(g �
(x0−ε, x0+ε)))∩V and hence that Φ◦H−1 provides an analytic continuation
of φ to V , as required.

The case that |φ(z)| > 1 for all z ∈ C is dealt with by applying the above
argument to the function 1/φ and then inverting the analytic continuation.
(The proof actually shows that φ is necessarily locally bounded at all but
finitely many points of graph(g).)

This completes the proof of Theorem 13.
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