Proofs of “Three Hard Theorems”
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Chapter §7 of Spivak’s Calculus focuses on three of the most important
theorems in Calculus. In this note I will give alternative proofs of these
results.

1 Preliminaries

We review a few important facts we have seen about sequences.

Lemma 1 If x, € [a,b] for all n € N and (x,)32, converges to x. Then
x € [a,b].

Proof We first show a < z. Suppose x < a. Choose € > 0 with € < a — z.
Then no element of the sequence is in the interval (x—e, z+€), a contradicton.
A similar argument shows b > x.

Lemma 2 If f : [c,d] — R is continuous, a,, € [c,d] forn € N and (a,)>2,
converges to a € [c,d]. Then (f(an))s>, converges to f(a).

n=1

Proof Let e > 0. Since f is continuous, there is § > 0 such that if [z —a| < 6,
then |f(x) — f(a)] < e. Since (a,)22, — a, there is N € N such that

n=1

la, —a| < 0 for all n > N. Thus |f(a,) — f(a)| < € for all n > N and
(f(an))ozy — fla).

Theorem 3 (Nested Interval Theorem) Suppose I, = [an,b,] where
Gy < b, formeNand I, D1, D132 .... Then

(1. #0.
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Proof Note that we have
alﬁaggag...gang ...... §bn§62§b1

Then each b; is an upper bound for the set A = {ay,as,...}. By the Com-
pleteness Axiom, we can find a a least upper bound for A.

We claim that a € [, for all n € N. Fix n € N. Since « is an upper
bound for A, a, < «a. But b, is an upper bound for A and « is the least

upper bound. Thus o« < b,,. Hence o € I, for all n € N and « € m I,.

n=1

Theorem 4 (Bolzano—Weierstrass Theorem) FEvery bounded sequence has
a convergent subsequence.

Proof Let (z;)°, be bounded. There is M € R such that |z;| < M for all
1 € N. We inductively construct a sequence of intervals
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such that:

i) I,, is a closed interval [a,, b,] where b, — a,, = 22—1\3;

ii) {i : x; € I,} is infinite.

We let [y = [ M, M]. This closed interval has length 2M and z; € I, for
all 2 € N.

Suppose we have I,, = [ay,, b,] satisfying i) and ii). Let ¢, be the midpoint
%. Each of the intervals [a,, ¢,| and [c,, b,] is half the length of I,,. Thus
they both have length 224 — 22,%1 If x; € I,,, then x; € [an, ¢,) or x; € [y, by,
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possibly both. Thus at least one of the sets

{i:2; €lan,c,]} and {i: z; € [¢,, b,]}

is infinite. If the first is infinite, we let a,+1 = a, and b,y = ¢,. If the
second is infinite, we let a,11 = ¢, and b,y1 = b,. Let I,11 = [ans1,bnr1]
Then i) and ii) are satisfied.

By the Nested Interval Theorem, there is o € ﬂ I,. We next find a
n=1
subsequence converging to .



Choose i; € N such that z;, € I;. Suppose we have 7,,. We know
that {i : z; € I,.1} is infinite. Thus we can choose i,.1; > 4, such that
Ti, ., € Iny1. This allows us to construct a sequence of natural numbers

1<l <iz3<...

where i,, € I,, for all n € N.
We finish the proof by showing that the subsequence (z;,)3%, — «. Let
€ > 0. Choose N such that ¢ > 22—% Suppose n > N. Then z; € I, and

o € I,,. Thus
2M  2M
i, —af < —— <
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for all » > N and (z;,)%%, — a.

2 Bounding and the Extreme Value Theorem

Theorem 5 (Bounding Theorem) If f : [a,b] — R is continous, then
there is M € R such that |f(z)| < M for all x € [a,b].

Proof For purposes of contradiction, suppose not. Then for any n € N we
can find z,, € [a,b] such that |f(x,)| > n. By the Bolzano—Weierstrass The-
orem, we can find a convergent subsequence x;,, Z;,, . ... Note that |f(z;, | >
in > n. Thus, replacing (x,)32, by (z;,)22,, we may, without loss of gener-
ality, assume that (z,,)%, is convergent. Suppose (x,)>°, — z. By Lemma

1, z € [a,b]. By Lemma 2,
(f(@n))pzr = f(2).

But the sequence (f(z,))2, is unbounded, and hence divergent, a contradi-
cation.

Theorem 6 (Extreme Value Theorem) Suppose a < :
f i ]a,b] — R, then there are c¢,d € [a,b] such that f(c) < f(z) < f(d)
for all x € [a,b)].

Proof Let A = {f(z) :a <z <b}. Then A # () and, by the Bounding
Theorem, A is bounded above and below. Let a = sup A. We claim that
there is d € [a,b] with f(d) = a.



Since @« = supA, for each n € N, there is z, € la,b with
a— 1 < f(z,) < . Note that (f(z,))52, converges to a. By the Bolzano-
Weierstrass Theorem, we can find a convergent subseqence. Replacing ()5,
by a subsequence if necessary, we may assume (x,,)2; — d for some d € |a, b].
Then (f(x,))22; — f(d). Thus f(d) = a. Note that f(z) < a = f(d) for all
x € [a,b].

Similarly, we can find ¢ € [a,b] with f(c) = 8 = inf A and f(c) < f(z)
for all x € [a, b].

3 Intermediate Value Theorem

Theorem 7 (Intermediate Value Theorem) If f : [a,b] — R is contin-
uous and f(a) <0 < f(b), then there is a < ¢ < b with f(c) = 0.

Proof We start to build a sequence of intervals
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such that I, = [a,,b,], f(a,) < 0 < f(b,) and b, — a, = l};—,‘f Let ay =
a,by = b and Iy = [ag, by]. Then f(ag) <0 < by and b —a = (b —a)/2°.

Suppose we are given I,, = [a,, b,| with f(a,) <0 < f(b,) and b, — a,, =
b— ajover2". Let d = 25% If f(d) = 0, then we have found a < d < b with
f(d) = 0 and are done. If f(d) > 0, let ap11 = an, bpy1 = d. If f(d) <0, let
any1 = d and

Let In+1 = [bn+1,an+1]. Then In+1 C In, f((ln+1) <0< f(bn+1> and
b1 — Qg1 = Q;La

By the nested interval theorem, there is ¢ € (°_,,. We claim that
f(c) =0.

Since a,,c € I, |a, —¢| < l’z_—n“ for all n € N. If € > 0, choose N such
that %3¢ < e. Then |a, — c| < € for all n > N. Hence (a,)32, converges to c.
Thus, by Lemma 2, (f(a,))52, converges to f(c). Since f(a,) < 0 for all n,
we must have f(c) < 0.

Similarly, (b,)22, — c and (f(b,))s>, — f(c). But each f(b,) > 0, thus
f(c) > 0. Hence f(c) =0.

Thus there is a < ¢ < b with f(c¢) = 0.



