MTHT 430 Analysis for Teachers

Problem Set 7

1) Suppose $A, B \subseteq \mathbb{R}$ are nonempty and bounded above. Prove the following.

- a) If $\sup A > c$, then there is $a \in A$ with a > c.
- b) If $\sup A < \sup B$, there is $b \in B$ an upper bound for A.
- c) For all $\epsilon > 0$ there is $a \in A$ such that $\sup A \epsilon < a \le \sup A$

2) Suppose $A, B \subseteq \mathbb{R}$ are nonempty and bounded above. Let

$$A + B = \{a + b : a \in A, b \in B\}.$$

- a) Prove that $\sup A + \sup B$ is an upper bound for A + B.
- b) Prove that $\sup(A+B) \leq \sup A + \sup B$.
- c) Prove that $\sup(A+B) \ge \sup A + \sup B$ and conclude that

$$\sup(A+B) = \sup A + \sup B.$$

[Hint: Suppose for contradiction that $\sup A + \sup B > \sup(A + B)$. As a first step use 1a) to show there is $a \in A$ with $a + \sup B > \sup(A + B)$.]

3) Verify the following limits using the definition of convergence.

- $a)\lim_{n\to\infty} \frac{1}{6n^2+1} = 0$
- b) $\lim_{n \to \infty} \frac{3n+1}{2n+5} = \frac{3}{2}$
- c) $\lim_{n \to \infty} \frac{2}{\sqrt{n+3}} = 0.$

4) Consider the sequence

$$0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, \dots$$

where each string of zeros has one more zero than the previous. Does this sequence converge or diverge? If it converges to a limit L, prove that it converges to L. If it diverges, prove that it diverges.

1