MTHT 430 Analysis for Teachers

Quiz 1–3 Solutions

Q1) Prove that if x < y and z < 0, then xz > xy.

Since x < y and z < 0, we know that y - x > 0 and -z > 0. The product of positive number is positive. Thus

$$0 < -z(y-x) = -yz + xz$$

and xz > yz.

Q2) Prove that $1+3+5+\ldots+(2n-1)=n^2$ for all $n\in\mathbb{N}$. In other words, prove that

$$\sum_{i=1}^{n} (2i - 1) = n^2.$$

We prove this by induction. First if n=1, then $1=1^2$ so the claim is true. For purposes of induction assume the claim is true for n=k. Then

$$\begin{array}{rcl} 1+3+5+\ldots+(2(k+1)-1) & = & (1+3+\ldots+2k-1)+(2k+1) \\ & = & k^2+2k+1 \text{ since the claim is true for } k \\ & = & (k+1)^2 \end{array}$$

Thus, by induction, the claim is true for all $n \in \mathbb{N}$.

Q3) Prove that if $f: X \to Y$ and $g: Y \to Z$ are onto, then $g \circ f$ is onto.

Recall: A function $h: A \to B$ is onto if for all $b \in B$ there is $a \in A$ with h(a) = b. The quantifiers "for all" and "there is" are **crucial** here.

Let $z \in Z$. We must show there is $x \in X$ with g(f(x)) = z. Since g is onto, there is $y \in Y$ with g(y) = z. Since f is onto, there is $x \in X$ with f(x) = y. Thus

$$g(f(x)) = g(y) = z$$