1) Decide if the following series coverges or diverges. Justify your answers and state explicity which test or tests you are using.

a) \[\sum_{n=1}^{\infty} \frac{n^2}{3^n} \]

b) \[\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^2} \]

c) \[\sum_{n=2}^{\infty} \frac{1}{n \ln n} \]

d) \[\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \]

e) \[\sum_{n=1}^{\infty} \frac{n^5}{2^n + n^2} \]

2) a) Show that if \(a_n > 0 \) for all \(n \) and \(\lim na_n = L \neq 0 \), then \(\sum a_n \) diverges.

b) Assume \(a_n > 0 \) and \(\lim n^2a_n \) exists. Show that \(\sum a_n \) converges.

3) Suppose \(\sum a_n \) and \(\sum b_n \) converge. Show that

\[\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n. \]