
Auctions

We will look at auctions under the assumption of Independent Private Val-
ues. We assume there are N bidders. Bidder i has a value vi and there is
a probability distribution Fi such that Pr(vi < r) = Fi(r). We assume that
v1, . . . , vn are independent random variables.

For simplicity we will consider only the case where each vi ∈ [0, 1] with
uniform distribution, i.e., Pr(vi < r) = r for r ∈ [0, 1]

First Price Sealed Bid Auctions
We consider a first price sealed bid auction where there are N players with

independent private values vi uniformly distributed in [0, 1].
A strategy for Player i will be of the form bi : [0, 1] → [0, 1] where Player

i bids bi(vi) with value vi. We will look for a symmetric equilibrium where
each player uses the same strategy b(v). We make two additional reasonable
assumptions

• b(0) = 0, if my value is 0, I should not bid more that 0.

• b is increasing, if v < w, then b(v) < b(w).

We look at Player 1’s strategy. We consider the auxiliary function u(r, v) which
the expected value for a Player with value v if they decided to bid as if they had
value r. The Player will only win if all other players bid less than b(r). Since
b is increasing, this is only true if all of the other players value the object less
that r. Thus

u(r, v) = Pr(v2 < r, v3 < r . . . , vN < r)(v − b(r)) = rN−1(v − b(r)).

For a fixed v we can maximize u(r, v) by setting ∂u
∂r = 0. Of course, b(v) is

the optimal bid if we have value v. Thus, we would maximize u(r, v) by setting
r = v.

∂u

∂r
= (N − 1)rN−2(v − b(r))− rN−1b′(r) = 0

Thus
(N − 1)rN−2v = (N − 1)rN−2b(r) + rN−1b′(r).

Substituting v = r,

(N − 1)vN−1v = (N − 1)vN−2b(v) + vN−1b′(v)

(N − 1)vN−1 =
d

dv

[
vN−1b(v)

]
then, by the Fundamental Theorem of Calculus

vN−1b(v) =

∫ v

0

(N − 1)xN−1 dx

vN−1b(v) =
N − 1

N
vN

b(v) =
N − 1

N
v
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Thus there is a Bayesian-Nash equilibrium where Player i bids N−1
N vi.

Revenue Equivallence
First let’s consider the expected revenue for the seller in two types of auc-

tions.
N = 2 We break this into two cases. v2 ≤ v1 and v1 ≤ v2 On the first region

the expected maximal bid is v1
2 and the expectation on this region is∫ 1

0

∫ v1

0

v1
2

dv2dv1.

Since the other region is symmetric, the total expectation is

2

∫ 1

0

∫ v1

0

v12

2
dv2dv1 = 2

∫ 1

0

v21
2

dv1 = 2

(
1

6

)
= 1/3.

If N = 3 there are 6 cases depending on the 6 possible ordering of v1, . . . , v3.
If we assume v1 > v2 > v3, we get

6

∫ 1

0

∫ v1

0

∫ v2

0

2

3
v1 dv3dv2dv1 = 6

∫ 1

0

∫ v1

0

2

3
v1v2 dv2dv1

= 6

∫ 1

0

v31
3

dv1

= 6

(
1

12

)
= 1/2

For general N we need to consider all N ! orderings of x1, . . . , xN . if v1 >
. . . > vN we get the general expression

N !

∫ 1

0

∫ v1

0

. . .

∫ vN−1

0

N − 1

N
v1 dvNdvN−1 . . . dv1 =

N − 1

N + 1

Second Price Sealed Bid Auctions
We’ve argued before that bidding your value is a weakly dominant strategy

in a second price auction. Thus the equilibrium price will be the second highest
of the values. If v1 > v2 > . . . > vN , the equilibrium price is v2. There are N !
possible orderings of the vi, thus the expected equilibrium price is

N !

∫ 1

0

∫ v2

0

. . .

∫ vN−1

0

v2 dvNdvN−1 . . . dv1 =
N − 1

N + 1

We show this for N = 2, 3
Let N = 2

2

∫ 1

0

∫ v1

0

v2 dv2dv1 = 2

∫ 1

0

v21
2

dv1

= 2

(
1

6

)
= 1/3
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For N = 3

6

∫ 1

0

∫ v1

0

∫ v2

0

v2 dv3dv2dv1 = 6

∫ 1

0

∫ v1

0

v22 dv1dv2

= 6

∫ 1

0

v31
3

dv1

= 6

(
1

12

)
= 1/2

It may seem surprising that first price sealed bid auction and second price
sealed bid auctions give rise to the same expected revenue, but in fact this is
always the case! Vickery and Myerson received a Nobel prize for, among other
things, the following theorem (which we state vaugely).

Theorem 1 (Revenue Equivalence Theorem) Suppose we have N Players
with independent private values where Player i has values in [Li, Ui] with proba-
bility distribution Pr(x ≤ r) = Fi(r). Then, under reasonable assumptions, any
two auction procedures will lead to the same expected revenue.
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