Pareto Optimality

Suppose we are considering a game with N players. A strategy profile (a_1, \ldots, a_N) with payoff vector (x_1, \ldots, x_N) is *Pareto optimal* if there is no other strategy profile (b_1, \ldots, b_N) with payoff vector (y_1, \ldots, y_N) where:

i) $x_i \leq y_i$ for all i = 1, ..., N (i.e., no player does worse)

ii) $x_j < y_j$ for some j (some player does better).

While Pareto optimal outcome are desirable and might be expected in situations where the players cooperate to reach a final outcome, they may or may not agree with Nash equilibria.

Examples

1) Prisoner's Dilema

$$\begin{array}{c|ccc} & C & Q \\ \hline C & -3, -3 & 0, -10 \\ Q & -10, 0 & -1, -1 \\ \end{array}$$

In this case the Pareto optimal profiles are (C,Q), (Q,C) and (Q,Q). While the Nash equilibrium is (C,C). This shows that even a dominant solution need not be Pareto optimal.

2)

$$\begin{array}{c|cccc}
L & R \\
\hline
T & 2,2 & 0,0 \\
B & 0,0 & 1,1
\end{array}$$

In this case (T,L) and (B,R) are Nash equilibria and (T,L) is the unique Pareto optimal profile.

3)

	I T	ъ
	L	R
Т	2,2	1,1
В	$1,\!1$	0,0

In this case (T,L) is a dominant solution, and hence a Nash equilibrium. It is also the unique Pareto optimal profile.

4)

	L	\mathbf{C}	R
Т	3,3	$1,\!4$	0,0
Μ	4,1	2,2	$0,\!0$
В	0,0	$0,\!0$	1,1

In this case (T,L), (M,L), (T,C) and (B,C) are Pareto optimal, while (B,B) is the unique pure strategy equilibrium.