Stat/Econ 473 Game Theory

Very Simple Poker Model
Consider the following very simplified version of poker. Suppose we have a deck with 3 cards A, K, Q, where and A beats a K or Q and a K beats a Q. Each player is dealt one card from the deck.

Player 1 decides to check (C) or bet (B)
If Player 1 decides to check, the high card gets 1 and the low card gets -1 .
If Player 1 decides to bet, Player 2 decides to call (c) or fold (f). If 1 bets and 2 calls, the high card gets 2 and the low card gets -2 . If Player 2 folds, Player 1 gets 1 and Player 2 gets -1 .

There are three types of Player 1: 1A, 1K, 1Q depending on what card they are dealt and there are three types of Player 2: 2A, 2K 2 Q .

The following is the prior distribution of probabilities:

	2 A	2 K	2 Q
1 A	0	$1 / 6$	$1 / 6$
1 K	$1 / 6$	0	$1 / 6$
1 Q	$1 / 6$	$1 / 6$	0

The posterior probabilities are easy to calculate. For example:

$$
\operatorname{Pr}(2 A \mid 1 A)=0, \operatorname{Pr}(2 K \mid 1 A)=1 / 2 \text { and } \operatorname{Pr}(2 Q \mid 1 A)=1 / 2
$$

The other calculations are similar knowing what card Player 1 has there is a $1 / 2$ chance 2 has each of the other cards and 0 chance 2 holds the same card.

Each type of Player 1 has 2 choices C or B. Each type of Player 2 has two choices call or fold when Player 1 bets. This give 8 strategies for each Player, but we start by simplifying by IDWDS.

- For Player 1A: B weakly dominates C-If Player 1A checks she always gets 1 , if she bets she will always get at least 1 and might get 2 .
- For Player 2A: c weakly dominates f-if player 2A calls, he will get 2 , if he folds he will get -1 .
- For Player 2Q: f weakly dominates c-if player 2 Q calls, he will get -2 , while if he folds he will get 1 .
- Since Player 2A will call and Player 2Q will fold, Player 1K has expectation 0 if he checks and expectation $1 / 2(-2)+(1 / 2)(1)$ if he bets. Thus Player 1K should always check.

This leaves the question of what should 1Q and 2 K do?
If Player 1 is using the strategy $\mathrm{B} / \mathrm{C} / \mathrm{C}$ (i.e., only betting with an A), then Player 2K should fold. Suppose Player 2 is using the strategy c/f/f (ie. only calling with an A). Then

$$
u_{1 Q}(B, c / f / f)=1 / 2(-2)+1 / 2(1)=-1 / 2
$$

while

$$
u_{1 Q}(C, c / f / f)=-1
$$

Thus Player 1Q would prefer to B with a Q . So there is no pure strategy equilibrium where Player 1 uses the strategy $\mathrm{B} / \mathrm{C} / \mathrm{C}$.

If Player 1 is using the strategy $B / C / B$ (always bluffing with a Q), then

$$
u_{2 K}(B / C / B, c)=1 / 2(-2)+1 / 2(2)=0 \text { while } u_{2 K}(B / C / B, f)=-1
$$

Thus Player 2 will use c/c/f. Against, c/c/f
$u_{1 Q}(B, c / c / f)=1 / 2(-2)+1 / 2(-2)=-2$ and $u_{1 Q}(C, c / c / f)=-1$.
Thus 1Q would prefer to C. So there is no pure strategy equilibrium where Player 1 uses B/C/B.

We look for a mixed strategy equilibrium. Here is the strategic form of the game.

	$\mathrm{c} / \mathrm{c} / \mathrm{f}$	$\mathrm{c} / \mathrm{f} / \mathrm{f}$
$\mathrm{B} / \mathrm{C} / \mathrm{B}$	$-1 / 6,1 / 6$	$1 / 6,-1 / 6$
$\mathrm{~B} / \mathrm{C} / \mathrm{C}$	$1 / 6,-1 / 6$	0,0

How do we compute the expected payoffs? Note that the payoff to Player 2 is alway - the payoff to Player 1 so we just compute the payoffs for Player 1.

$$
\begin{gathered}
u_{1}(B / C / B, c / c / f)=1 / 6(2+1-1+1-2-2)=-1 / 6 \\
u_{1}(B / C / B, c / f / f)=1 / 6(1+1-1+1-2+1)=1 / 6 \\
u_{1}(B / C / C, c / c / f)=1 / 6(2+1-1+1-1-1)=1 / 6 \\
u_{1}(B / C / C, c / f / f)=1 / 6(1+1-1+1-1-1)=0
\end{gathered}
$$

Suppose Player 2 uses the mixed strategy σ_{q} : Play c/c/f with probability q and $\mathrm{c} / \mathrm{f} / \mathrm{f}$ with probability $1-q$. Then

$$
u_{1}\left(B / C / B, \sigma_{q}\right)=q(-1 / 6)+(1-q)(1 / 6)=\frac{1-2 q}{6}
$$

and

$$
u_{1}\left(B / C / C, \sigma_{q}\right)=q(1 / 6)
$$

Player 1 is indifferent if $q=1 / 3$.
Suppose Player 1 uses a mixed strategy σ_{p} : Play B/C/B with probability p and $B / C / C$ with probability $(1-p)$. Then

$$
u_{2}\left(\sigma_{p}, c / c / f\right)=p(-1 / 6)+(1-p)(1 / 6)=\frac{1-2 p}{6}
$$

and

$$
u_{1}\left(\sigma_{p}, c / f / f\right)=p / 6
$$

Player 2 is indifferent if $p=1 / 3$.
Thus there is a Bayes-Nash equilibrium when $p=q=1 / 3$.
What does this mean? Optimally, Player 1 should bluff and bet with a Q $1 / 3$ of the time and Player 2 should call with a K $1 / 3$ of the time. Note that in this case Player 1 has an expected payoff of $1 / 18$ and Player 2 has an expected payoff of $-1 / 18$.

