Stat/Econ 473 Game Theory

Problem Set 3

Due: Tuesday February 5

From the Text: Chapter 3: 10 (in this problem are any Nash equilibria lost in IDWDS?)

Chapter 4: 11, 13, 15

1) Consider a first price sealed bid auction where there are two bidders Alice and Bob. Each submits a bid. If they submit different bids, they highest bidder wins. If they submit the same bid, each has a $1 / 2$ chance of winning. In either case the winner pays the amount of the bid. Suppose Alice values the object auctioned at $\$ 20$ and Bob values it at $\$ 12$ and in the allowable bids are $\$ 0$, $\$ 1, \$ 2, \ldots$
a) Find a Nash equilibrium where Alice bids $\$ 12$.
b) Are there any Nash equilibria where Alice bids $\$ m$ where $20<m$?
c) Are there any Nash equilibria where Alice bids $\$ m$ where $12<m \leq 20$?
d) Are there any Nash equilibria where Alice bids $\$ m$ where $m<12$?
e) (3pt Bonus) Suppose we eliminate all strategies that are weakly dominated. What Nash equilibria are possible?
Justify your answers.
2) Watch the following excerpt from the film A Beautiful Mind, the Academy Award winning film about the life of John Nash.
https://www.youtube.com/watch?v=CemLiSI5ox8

Consider the (admittedly sexist) strategic game where 4 men meet 5 women, one blonde and four brunettes, in a bar. Each man must decide to make a pass at the blonde or any of the brunettes. Each man prefers the blonde to the brunettes and prefers the brunettes to failure. If more than one man makes a pass at the blonde everyone will fail. If at most one man makes a pass at the blonde everyone will succeed.
a) What are the pure strategy Nash equilibria?
b) Did the screenwriters get this right?

Justify your answers.

