Stat/Econ 473 Game Theory

Problem Set 9

Due: Tuesday April 9 :

From the Text: Do the following problems from the text. Chapter 10: 20.

1) Consider a two player game of chicken. Each player has two possible types they are either crazy or sane. We call these types 1C, 1S, 2C, 2S. Each player knows their own type. We have the following common prior probability distribution on types

	2 C	2 S
1 C	.1	.4
1 S	.2	.3

For example, this means the probability that 1 is sane and 2 is crazy is .2 and the probability that probability that both are sane is .3 .

Each player decides wether to be aggressive or passive.

Player type	Player's action	Opponent's action	Payoff
Crazy	A	A	0
Crazy	A	P	5
Crazy	P	A	-10
Crazy	P	P	-5
Sane	A	A	-10
Sane	A	P	5
Sane	P	A	-5
Sane	P	P	0

So for, example if 1 C plays A and 2 S plays P the payoff is 5 for Player 1 and -5 for Player 2.
a) Right down the four payoff matricies for the game where each type of Player 1 plays against each type of Player 2.
b) Calculate the posterior probabilities: $\operatorname{Pr}(2 C \mid 1 C), \operatorname{Pr}(2 C \mid 1 S), \operatorname{Pr}(1 C \mid 2 C)$ and $\operatorname{Pr}(1 C \mid 2 S)$.
c) Does either type of either Player have a strictly dominant strategy? Explain.
d) Find all pure strategy Bayes-Nash equilibria.

continued on back

2) Suppose there are six hospitals $\mathrm{H} 1, \mathrm{H} 2, \ldots, \mathrm{H} 6$ and six medical students S 1 , S2, ..., S6 and the following tables give the preference for each hospital and student.

Hospital Preferences

hospital	first choice	second choice	third choice	fourth choice	fifth choice	sixth choice
H1	S1	S 6	S 5	S 4	S 2	S 3
H2	S 6	S 2	S 1	S 3	S 5	S 4
H3	S 1	S 5	S 4	S 6	S 3	S 2
H4	S 2	S 4	S 6	S 1	S 5	S 3
H5	S 6	S 2	S 3	S 1	S 4	S 5
H6	S 1	S 6	S 2	S 3	S 4	S 5

Student Preferences

student	first choice	second choice	third choice	fourth choice	fifth choice	sixth choice
S1	H6	H3	H5	H2	H4	H1
S2	H5	H4	H1	H3	H6	H2
S3	H6	H3	H4	H5	H2	H1
S4	H1	H5	H6	H2	H3	H4
S5	H2	H5	H4	H1	H3	H6
S6	H2	H1	H4	H3	H6	H5

Use the usual Gayle-Shapley algorithm (where hospitals make offers) to find a stable matching. Show which proposals are made at each stage and which are declined.

