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Vaught’s Conjecture for ω-stable Theories

Let I(T, κ) be the number of nonisomorphic models of T

of cardinality κ.

Theorem 1 (Shelah 1981) If T is an ω-stable theory in a

countable language and I(T,ℵ0) > ℵ0, then I(T,ℵ0) = 2ℵ0.

Theorem 2 (Hrushovski–Sokolović 1992) There are 2ℵ0

countable differentially closed fields of characteristic zero.



Outline for Tutorial

• Simple examples using dimensions to code graphs into

ω-stable theories

• Survey of the model theory of differentially closed fields

• Proof of Hrushovski–Sokolović Theorem



Coding Graphs with Dimensions

Example 1 Let T1 be the following theory in the language

{V, X,+, π}.

• V and X are disjoint sorts

• (V,+) is a torsion free divisible abelian group (i.e. V is

a Q-vector space)

• π : X → V is onto

• each fiber π−1(v) is infinite.

Countable models are determined by dim(V ).



Uncountable Models of T1

Let G be a graph of cardinality κ ≥ ℵ1 such that every

vertex has valance at least 2.

Let M0 be the prime model of T1 over A ⊂ V a linearly

independent set of size κ.

In M0, for v ∈ V , π−1(v) is countable.

We assume that A is the set of verticies of G.

B = {a + b : a, b ∈ A, (a, b) ∈ G}.

Lemma 3 There is M(G) |= T1 such that |π−1(a)| = ℵ0 if

a ∈ A ∪ B and |π−1(a)| = κ for a ∈ V \ (A ∪ B).



Recovering the Graph from M(G)

Let S = {a ∈ V : |π−1(a)| = ℵ0} = A ∪ B.

We say that {x, y, z} ⊆ S is a triangle if x, y, z are pairwise
independent but not independent.

Lemma 4 Every triangle is of the form {a, b, a+b} for some
a, b ∈ A.

Proof (sketch) Any three elements of A are independent.

Any three elements of B are independent. The hardest
case a + b, b + c and a + c are interdefinable with a, b, c (as
(a + b) + (b + c) − (a + c) = 2b).

If x ∈ A and y, z ∈ B they are independent.

If a, b, c ∈ A, then a, b, a + c are independent.



Since every vertex has valance at least 2,

A = {a ∈ S : a is in at least two triangles}

and (a, b) is an edge if and only if there is a c ∈ S, {a, b, c}
is a triangle.

Thus we can recover G from M(G). If G 6∼= G′, then

M(G) 6∼= M(G′).

Proposition 5 I(T1,ℵ0) = ℵ0, I(T1, κ) = 2κ for all κ ≥ ℵ1.

Observation In countable models of T1 we don’t have

enough choices to do coding.



Example 2 L = {V, X,+, π, f} let T2 ⊃ T1 so that each

(π−1(v), f) ≡ (Z, s) [where s(x) = x + 1].

For each v, dim(π−1(v)) ≥ 1 is the number of copies of Z
in π−1(v).

Let G be a graph as above with vertex set A of cardinality

κ ≥ ℵ0.

Lemma 6 There is M(G) |= T2 of cardinality κ with A ⊆ V

independent such that for a ∈ V

dim(π−1(a)) = 1 if a ∈ A or a = b + c where (b, c) ∈ G and

dim(π−1(a)) = κ otherwise.

Corollary 7 I(T2, κ) = 2κ for all κ ≥ ℵ0.



Homework

• Work out the details for T1 and T2.

Example 3 Change Example 1 by making V a vector space

over F2. Show that T3 is ℵ0-categorical with I(T3, κ) = 2κ

for all uncountable κ. (Hint: Use triangle free graphs)

Example 4 Change Example 2 by making V a set with no

additional structure. Show that

I(T4,ℵα) ≤ (α + ℵ0)
(α+ℵ0)

Example 5 Change Example 2 by making V ≡ (Z, s). Show

that

I(T5,ℵα) ≤ (α + ℵ0)
(α+ℵ0)

ℵ0



Observations

For this method of coding graphs using dimensions to
work, we seem to need:

• large family of types (pa : a ∈ A), pa ∈ S(a), to which
we can assign dimensions (for Vaught’s Conjecture we
would like to be able to assign different countable di-
mensions).

• the ability to realize one type in the family while omit-
ting others (orthogonality)

• good notion of independence in A with lots of elements
a, b, c ∈ A, pairwise independent but not independent
(non-triviality)



Differential Fields

A differential field (K, δ) is a field K with a derivation δ :

K → K such that

δ(x + y) = δ(x) + δ(y)

δ(xy) = xδ(y) + yδ(x).

We will assume all fields have characteristic 0.

Examples i) R(t) where δ(t) = 1

ii) Mer(U) the field of meromorphic functions on U ⊆ C



Differential Polynomials

If (K, δ) is a differential field, we form K{X1, . . . , Xn} the

ring of differential polynomials in n-variables.

K[X1, . . . , Xn, X ′
1, . . . , X ′

n, . . . , X
(m)
1 , . . . , X

(m)
n , . . .]

and extend the derivation by δ(X(j)
i ) = X

(j+1)
i .

For example

X ′ − aX

(X ′′)2 − X3 − aX − b

The order of f is the largest n such that some X
(n)
i occurs

in f .



Differentially Closed Fields

We say that (K, δ) is differentially closed (DCF) if whenever

f1, . . . , fm ∈ K{X1, . . . , Xn} and there is L ⊇ K where

L |= ∃v f1(v) = . . . = fm(v) = 0,

then

K |= ∃v f1(v) = . . . = fm(v) = 0.

Differentially closed fields are the existentially closed dif-

ferential fields.



Most Embarrasing Question: What’s an example of a

differentially closed field?

There are no natural examples.

Theorem 8 (Seidenberg) Every countable differential field

is isomorphic to a field of germs of meromorphic functions.



If there are no natural models, why do we study

differentially closed fields?

Reason 1: They provide useful universal domains for study-

ing algebraic differential equations. The model theory of

DCF has proved useful in studying:

• Differential Galois Theory

• Differential Algebraic Groups

• Diophantine Geometry



Reason 2: As Gerald Sacks said in Saturated Model

Theory, DCF is the “least misleading example” of an ω-

stable theory.

Many interesting phenomena from all over model theory

are witnessed in DCF, including:

• Robinson Style: Quantifier Elimination, Model Com-

pleteness

• Morley Style: ω-stability, prime model extensions

• Shelah Style: forking, orthogonality, DOP, ENI-DOP

• Zilber Style: geometric stability, ω-stable groups



Quantifier Elimination

The first results on DCF are due to Robinson, with im-

provements by Blum.

Theorem 9 DCF is axiomatizable.

Blum Axioms: If f, g ∈ K{X} and order(f) > order g, there

is x ∈ K with f(x) = 0 and g(x) 6= 0.

Theorem 10 DCF has quantifier elimination and hence is

model complete.



Differential Nullstelensatz

We say that an ideal I ⊆ k{X1, . . . , Xn} is a differential ideal

if whenever f ∈ I, then f ′ ∈ I.

Theorem 11 Let K |= DCF. Suppose P ⊆ K{X1, . . . , Xn}
is a prime differential ideal, f1, . . . , fm ∈ P and g 6∈ P . Then

there is x ∈ Kn such that

f1(x) = . . . = fm(x) = 0 ∧ g(x) 6= 0.

Proof Let L ⊇ K be a DCF containing the differential

domain K{X}/P . In L, X1/P, . . . , Xn/P are a solution to

f1 = . . . = fm = 0 ∧ g 6= 0. By model completeness, there

is a solution in K.



The Kolchin Topology

A Kolchin closed V ⊆ Kn is a finite union of sets of the

form

{x ∈ Kn : f1(x) = . . . = fm(x) = 0}

where f1, . . . , fm ∈ K{X}.

Proposition 12 X ⊆ Kn is definable if and only if it is a

finite Boolean combination of Kolchin closed sets.



Types and Ideals

We say that an ideal I ⊆ k{X1, . . . , Xn} is a differential ideal
if whenever f ∈ I, then f ′ ∈ I.

If k ⊆ K |= DCF and a ∈ K, then, by quantifier elimination,
tp(a/k) is deterimined by

Ia = {f ∈ k{X} : f(a) = 0}

a prime differential ideal.

Proposition 13 There is a bijection between Sn(k) and
prime differential ideals in k{X1, . . . , Xn}

Proof If P is a prime differential ideal, then R = k{X1, . . . , Xn}/P

is a differential domain. Let K be the differential closure of
the fraction field of R and let a ∈ K be (X1/P, . . . , Xn/P ).
Then Ia = P .



Differential Basis Theorem

Theorem 14 If k is a differential field, then there are no
infinite ascending chains of radical differential ideals in
k{X}. Every prime differential ideals are finitely generated.

Corollary 15 An arbitrary intersection of Kolchin closed
sets is Kolchin closed.

Corollary 16 If k ⊆ K and a ∈ K, there is V a Kolchin
closed set defined over k such that a ∈ V and if W ⊂ V is
defined over k, then a 6∈ W . We say tp(a, k) is the generic
type of V .

Proof Let V be the intersection of all Kolchin closed W

defined over k with a ∈ W .

Every type is the generic type of some Kolchin closed set.



ω-stability

Corollary 17 DCF is ω-stable.

Proof We know |Sn(k)| is the number of prime differential

ideals in k{X1, . . . , Xn}. Since prime differential ideals are

finitely generated there are only |k| differential prime ideals

in k{X}.



Differential Closures

Definition 18 Let k be a differential field. We say that

K |= DCF is a differential closure of k if k ⊆ K and when-

ever L |= DCF and k ⊆ L, there is a differential field em-

bedding η : K → L fixing k pointwise.

Differential closures are prime model extensions.



Theorem 19 i) Differential closures exist

ii) Differential closures are unique up to isomorphism.

iii) Every element of the differential closure of k realizes

an isolated type in S(k).

iv) Differential closures need not be minimal

By Morley i) and iii) are always true of prime model exten-

sions in ω-stable theories.

By Shelah ii) is always true of prime model extensions in

stable theories.

iv) was proved independently by Rosenlicht, Kolchin and

Shelah.



The Field of Constants

Let C = {x : δ(x) = 0}. C is an algebraically closed field.

Proposition 20 If X ⊆ Kn is definable, then X ∩ Cn is

definable in (C,+, ·).

Proof By quantifier elimination and the triviality of δ on

C, X = V ∩ Cn where V ⊆ Kn is definable in (K, +, ·).

By stability of ACF, X is definable in (C,+, ·).

Corollary 21 C is strongly minimal.

One invariant of K |= DCF is the transcendence degree of

the field of constants.



Differential Transcendentals

Let k ⊆ K. We say a1, . . . , an ∈ K are differentially inde-

pendent over k, if Ia = {0}.

The differential transcendence degree of K/k, tdδ(K/k), is

the maximal cardinality of a differential independent set.

The differential transcendence degree over Q is a second

invariant of K.

At one point it was conjectured that (tdδ(K/Q), td(C))

determined K up to isomorphism.



Linear Equations

Let K |= DCF, a0, . . . , an ∈ K and let

f(X) = anX(n) + . . . + a1X ′ + a0X.

Using the usual theory of linear ODEs we prove:

Proposition 22 The solution set to f(X) = 0 is an n-

dimensional vector space over C.

Corollary 23 The formula f(x) = 0 has Morley rank n.

Corollary 24 The type of a differential transcendental has

Morley rank at least ω.



Rank and Order

Proposition 25 If g ∈ K{X} has order n, then the formula

g(x) = 0 has Morley rank at most n.

Corollary 26 The type of a differential transcendental has

Morley rank exactly ω.

The equation XX ′′ = X ′ has order 2 but Morley rank 1.



Strongly Minimal Sets

Recall that a definable set X ⊆ Kn is strongly minimal if is

infinite, but has no infinite coinfinite definable subset.

• What are the strongly minimal sets in DCF?

The first natural example is the constant field C. Are there

any others?

Recall that strongly minimal sets come equiped with a pre-

gometry given by algebraic closure.



The Zilber Trichotemy

• A strongly minimal set X is trivial if

cl(A) =
⋃

a∈A

cl(a)

for all A ⊆ X.

For example, a set with no structure and (Z, s) are trivial.



Modular Strongly Minimal Sets

• A strongly minimal set is modular if whenever a ∈ cl(B, c)

there is b ∈ clB such that a ∈ cl(b, c).

For example, (V,+) a Q-vector space. cl(A) =span(A). If

a =
∑

mibi + nc

let b =
∑

mibi.

Theorem 27 (Hrushovski) Nontrivial modular strongly min-

imal sets are nonorthogonal to an interpretable strongly

minimal group.

In modular groups every definable subset of Gn is a Boolean

combination of cosets of definable subgroups.



Nonmodular strongly minimal sets

Algebraically closed fields are nonmodular strongly minimal

sets. If a0, . . . , an−1 are algebraically independent and x is

a solution to

xn + an−1xn−1 + . . . + a1x + a0,

then x is not algebraic over any subfield of Q(a0, . . . , an−1)

of transcendence degree less than n.

Zilber conjectured that algebraically closed fields were the

only nonmodular strongly minimal sets. Hrushovski showed

this is false in general.

Zilber’s Principle In natural settings the only nonmodular

strongly minimal sets “are” algebraically closed fields.



Strongly Minimal Sets in DCF

Theorem 28 (Hrushovski–Sokolović) In DCF if X is a

nonmodular strongly minimal set, there is a definable finite-

to-one f : X → C.

In particular X is nonorthogonal to C (we will define this

later)



Trivial Strongly Minimal Sets

There are trivial strongly minimal sets in DCF.

Theorem 29 (Rosenlicht,Kolchin,Shelah) The equations

X ′ = X3 − X2 and X ′ =
X

X + 1
define trivial strongly minimal sets.

Indeed these equations define infinite sets of indiscernibles
(± finitely many points).

Are these sets useful for many model constructions? Yes,
for κ ≥ ℵ1. But in the countable case they always have
dimension ℵ0.

Conjecture 30 In DCF any trivial strongly minimal set is
ℵ0-categorical.



Are there nontrivial modular strongly minimal sets?


