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Abstract. In this paper the authors find examples of translation
surfaces that have infinitely generated Veech groups, satisfy the
topological dichotomy property that for every direction either the
flow in that direction is completely periodic or minimal, and yet
have minimal but non uniquely ergodic directions.

1. Introduction and Statement of Theorems

Let (X, ω) be a translation surface where X is a closed surface of
genus at least 2. Equivalently, X is a Riemann surface, and ω is a
holomorphic 1-form on X. For each θ ∈ [0, 2π) there is a vector field
defined on the complement of the zeroes of ω such that arg ω = θ along
this vector field. The corresponding flow lines are denoted φθ. A great
deal of work has been done to try to understand the dynamics of φθ. For
a countable set of θ there is a flow line of φθ joining a pair of zeroes of ω.
These flow lines are called saddle connections. For any θ such that there
is no saddle connection in direction θ, it is well-known that the flow
is minimal. Veech ([Ve2]) introduced an important class of translation
surfaces, now called Veech surfaces. They are defined by the property
that the stabilizer SL(X, ω) of the surface under the action of SL(2, R)
on the moduli space of translation surfaces (or abelian differentials) is
a lattice.1 These surfaces satisfy ([Ve2]) optimal dynamics in that for
every direction θ, either the flow lines of φθ are all closed or saddle
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connections and the surface decomposes into a union of cylinders, or
the flow is minimal and uniquely ergodic.

On the other hand Veech [Ve1] had previously found examples of
skew rotations over the circle that are not strictly ergodic. Namely, the
orbits are dense but not uniformly distributed. Veech’s examples can
be interpreted ([MaTa]) in terms of flows on (X, ω) where X has genus
2 and ω has a pair of simple zeroes. Veech’s theorem together with
his examples raised the issue of what can be said about the dynamics
of flows on surfaces (X, ω) that are not Veech surfaces, both from the
measure-theoretic and topological points of view.

We say that (X, ω) satisfies topological dichotomy, if for every direc-
tion, either the flow is minimal, or every flow line is closed or a saddle
connection. This is equivalent to saying that if there is a saddle con-
nection in direction θ, then there is a cylinder decomposition of the
surface in that direction. A translation surface (X, ω) is said to satisfy
strict ergodicity if every minimal direction is uniquely ergodic. Veech
surfaces satisfy both topological dichotomy and strict ergodicity.

In genus 2 McMullen ([Mc4]) showed that every surface that is not a
Veech surface does not satisfy topological dichotomy. Cheung and Ma-
sur ([ChMa]) showed that every surface of genus 2 that is not a Veech
surface does not satisfy strict ergodicity. Thus, neither generalisation
of the notion of a Veech surface can be realised in genus 2.

From the measure theoretic point of view, in the paper [MaSm] it
was shown that a generic translation surface in any moduli space does
not satisfy the strict ergodicity property.

In this paper we prove the following theorem.

Theorem 1.1. There are examples of translation surfaces that satisfy

topological dichotomy but not strict ergodicity. Moreover, these exam-

ples have infinitely generated SL(X, ω).

These examples are based on a construction of Hubert and Schmidt
([HuSc]) whose original motivation was to give examples of translation
surfaces with infinitely generated SL(X, ω). They are double covers
of genus 2 Veech surfaces that are branched over a singularity and a
aperiodic connection point. Recall that a connection point is defined by
the property that every segment from a singularity to the point extends
to a saddle connection. It is periodic if its orbit under SL(X, ω) is finite.
The existence of aperiodic connection points was first established in
[HuSc] for any non-arithmetic Veech surface in the stratum H(2).

We also give a billiard example:
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Theorem 1.2. Let ∆ be the rational billiard table of the (2π
5

, 3π
10

, 3π
10

)

triangle and (X̂, ω̂) the associated translation surface obtained by the

unfolding process. Then (X̂, ω̂) satisfies topological dichotomy but not

strict ergodicity.

A slightly weaker condition than topological dichotomy is complete

periodicity. A direction θ is said to be completely periodic if every flow
line in direction θ is closed. In that case, the surface decomposes into
cylinders. Each cylinder is maximal in the sense that it cannot be en-
larged. The boundary of these cylinders consists of saddle connections.
The surface (X, ω) is said to be completely periodic if any direction that
has some cylinder in that direction is completely periodic. Calta ([Ca])
gave examples of families of genus 2 translation surfaces that satisfy
complete periodicity and yet are not lattice surfaces. These examples
were independently discovered by McMullen [Mc4] who further showed
that they do not satisfy topological dichotomy.

It is worth noting that if a surface is a finite branched cover over a
Veech surface, then it trivially satisfies complete periodicity. Namely,
any direction with a cylinder on the cover gives rise to a completely
periodic direction on the Veech surface, which in turn means that the
direction is completely periodic on the cover. If the cover is branched
over a set of connection points, at most one of which is aperiodic, then
it satisfies topological dichotomy as well.

Smillie and Weiss ([SmWe]) have shown that a surface satisfying
both topological dichotomy and strict ergodicity need not be a Veech
surface. These examples are also based on the construction of Hubert
and Schmidt ([HuSc]) but differ from our examples in that they are
branched over a single aperiodic connection point. Smillie and Weiss’s
construction proves strict ergodicity for every cover over a Veech surface
branched over one point. If the branched point is not a connection
point, then the cover does not satisfy the topological dichotomy. This
means that there are also examples that satisfy strict ergodicity and
not topological dichotomy.

We actually prove the following more general theorem.

Theorem 1.3. Let (X̂, ω̂) be a branched double cover over any lattice

surface (X, ω) branched over the singularity and a regular aperiodic

point. Then (X̂, ω̂) does not satisfy strict ergodicity.

The classification of Veech surfaces in higher genus is far from com-
plete. Theorem 1.3 does apply to infinitely many surfaces X of genus
higher than 2, such as pairs of regular n-gons with parallel sides iden-
tified, the original examples of Veech surfaces (see [Ve2]). McMullen
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proved the existence of infinite families of Veech surfaces in genus 3 and
4 (see [Mc6]). Bouw and Möller gave another family of examples ob-
tained by deep algebraic methods (see [BoMö]). Nevertheless Theorem
1.1 only gives examples of some coverings of genus 2 Veech surfaces.
The existence of aperiodic connection points is an open question when
the genus of the Veech surface is greater than 2. Thus, topological di-
chotomy for coverings of Veech surfaces of genus greater than 2 is not
known.

Acknowledgments. The authors would like to thank Matt Bain-
bridge, Emanuel Nipper and John Smillie for useful comments.

2. Background

In this section, we recall some results that we will use later in the
proof of the main theorem.

2.1. Veech surfaces. Let (X, ω) be a translation surface. The sta-
bilizer of (X, ω) under the SL(2, R) action is called the Veech group

of (X, ω) and is denoted by SL(X, ω). A more intrinsic definition is
the following. An affine diffeomorphism is an orientation preserving
homeomorphism of X which is affine in the charts of ω and permutes
the zeroes of ω. The derivative (in the charts of ω) of an affine diffeo-
morphism defines an element of SL(X, ω) and vice versa.

A translation surface (X, ω) is a Veech surface if its Veech group is
a lattice in SL(2, R).

We recall that a Veech surface satisfies both topological dichotomy
and strict ergodicity by a theorem of Veech [Ve2]. (This is sometimes
called Veech dichotomy in the literature.) Moreover a periodic direc-
tion on a Veech surface (X, ω) is fixed by a parabolic affine diffeomor-
phism. As SL(X, ω)\ SL(2, R) has a finite number of cusps there are a
finite number of periodic directions up to the action of the affine group
of diffeomorphisms. Therefore, there are a finite number of cylinder
decompositions; each one is associated to a cusp.

A Veech surface is arithmetic if it is a covering of a flat torus, ramified
over one point; otherwise, it is a non-arithmetic Veech surface.

2.2. Classification of Veech surfaces in genus 2. There are two
moduli spaces or strata of abelian differentials in genus 2: H(1, 1) the
stratum of differentials with two zeroes of order one and H(2) the
stratum of differentials with a single zero of order 2.

McMullen gave a complete classification of non-arithmetic Veech sur-
faces in genus 2 [Mc1, Mc2, Mc3, Mc4, Mc5] (see also Calta [Ca] for
some partial results and a different approach). McMullen proved that
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in H(2) there are infinitely many non-arithmetic Veech surfaces and
classified them. Each of them is defined over a real quadratic field
which means that, up to normalization, all the relative periods lie in a
quadratic field.

Every SL(2, R) orbit of a Veech surface in H(2) contains a L-shaped
surface and we have

Theorem 2.1 (McMullen [Mc3]). The L-shaped surface L(a, b) is a

Veech surface if and only if a and b are rational or a = x + z
√

d and

b = y + z
√

d for some x, y, z ∈ Q with x + y = 1 and d ≥ 0 in Z.

(see figure 1 for the definition of L(a, b)).

1

1

b

a

Figure 1. L(a, b)

The situation is very different in H(1, 1). There is only one non-
arithmetic Veech surface (up to action of SL(2, R)): the surface ob-
tained from the regular decagon by gluing opposite sides together (see
[Mc4, Mö, Mc5].

2.3. Periodic directions in H(2). In a completely periodic direction,
a surface (X, ω) in H(2) decomposes into one or two cylinders ([Zo]).
If (X, ω) is a non-arithmetic Veech surface, every periodic direction
induces a two cylinders decomposition [Ca]. For simplicity, assume
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that the horizontal direction is periodic. There are three horizontal
saddle connections. Two of them are exchanged by the hyperelliptic
involution. We will call them non Weierstrass saddle connections. The
third one contains a Weierstrass point and is fixed by the hyperelliptic
involution; it will be called a Weierstrass saddle connection.

The boundary of one cylinder consists of the two saddle connections
exchanged by the hyperelliptic involution. We call it the non self-gluing

cylinder. The other one has two saddle connections on each component
of its boundary. One of them contains a Weierstrass point and lies on
both components. It is the self-gluing cylinder. We summarize this in
figure 2.

Figure 2. Periodic direction in H(2). Black points cor-
respond to the singular point and white points to the
five other Weierstrass points. Parallel sides of the same
length are identified.

2.4. Infinitely generated Veech groups and connection points.

Constructions of translation surfaces with infinitely generated Veech
groups can be found in [HuSc] and [Mc2]. We recall some ingredients
in Hubert-Schmidt’s approach.

Theorem 2.2 (Hubert-Schmidt [HuSc]). Any double covering of a

Veech surface ramified over a singularity and a aperiodic connection

point has infinitely generated Veech group and satisfies topological di-

chotomy.

Möller ([Mö]) proved that the Weierstrass points are the only peri-
odic points on a non-arithmetic Veech surface of genus 2. Following
Calta and McMullen, one can show that a point on the L-shaped Veech
surface L(a, b), with a, b ∈ Q(

√
d), is a connection point if and only

if its coordinates belong to Q(
√

d) (the origin is the singular point).
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Consequently, if a point in L(a, b) has a coordinate which is not in

Q(
√

d) it is contained in at most one saddle connection (see [HuSc]).

2.5. Space of coverings. Given a translation surface (X, ω) with sin-
gular set Σ one can consider the moduli space M of all double covers
(X̂, ω̂) branched over two points, one in Σ and the other not in Σ, up
to biholomorphic equivalence. An explicit way to realize an element of
M is to take two copies of (X, ω) each marked with a segment σ from
some point P0 ∈ Σ to a nearby point P1 6∈ Σ. Cut both copies along σ
and glue them pairwise. We call σ a slit and refer to this construction
as a slit construction. Note that Smillie and Weiss’s examples are not
formed in this manner.

Lemma 2.3. Each surface in M can be obtained via a slit construction.

Moreover, two surfaces lie in the same connected component if they are

branched over zeroes that correspond under the SL(2, R) action.

Proof. Let π : (X̂, ω̂) → (X, ω) be the natural projection and τ : X̂ →
X̂ the involution such that π ◦ τ = π. Let P̂0, P̂1 ∈ X̂ be the branching
points lying over P0 and P1, respectively. Let γ̂ be any separating multi-
curve on X̂ such that τ(γ̂) is homotopic to γ̂. (By a multi-curve we
mean a union of disjoint simple closed curves. To construct γ̂, choose
any simply-connected subset of X whose complement is a finite union
of arcs containing P0 and P1; the closure of either one of its two lifts
is a sub-surface whose boundary is fixed by τ .) It is a standard fact
that there is a geodesic with respect to the flat structure of ω̂ in the
class of γ̂, again denoted by γ̂. It is uniquely determined if and only if
no component of γ̂ is homotopic to the core curve of a cylinder in X̂
and it has no transverse self-intersections. We may choose it so that
τ(γ̂) = γ̂. Let X̂1, X̂2 be the two components in the complement of γ̂
that are interchanged by τ .

It is clear that both P̂0, P̂1 ∈ γ̂; otherwise, one of them would lie in
the interior of either X̂1 or X̂2, and since τ fixes the point, it would not
interchange X̂1 and X̂2. Let σ1 be a saddle connection in γ̂ with an
endpoint at P̂1. Note that τ(σ1) 6= σ1 because the interior of σ1 would
contain a point fixed by τ , which is impossible. The pair σ1 ∪ τ(σ1)

divides a neighborhood of P̂1 into two components interchanged by τ
so that there are an equal number n of segments of γ̂ on each side of
σ1 ∪ τ(σ1). Since γ̂ is separating, n is even. The total angle at P̂1 is 4π
so that there is a total angle of 2π on each side of σ1 ∪ τ(σ1). Since γ̂
is a geodesic, the angle between incoming and outgoing segments is at
least π. This is not possible for if n ≥ 2 so we must have n = 0. Hence,
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there is a unique component of γ̂ that contains P̂1. This component is
fixed by τ and also contains P̂0.

The projection π(γ̂) of γ̂ to X consists of an arc joining P1 to P0

together with a finite union of loops. A closed curve in X \ {P0, P1}
lifts to a closed curve if and only if it intersects π(γ̂) an even number
of times. Let γ be a curve in X joining P1 to P0 that is homologous to
π(γ̂) as chains relative to Σ∪P1. It is easy to see that we may represent
γ by an closed embedded arc. Since γ and π(γ̂) are homologous (mod

2), the surface (X̂, ω̂) can be obtained via a slit construction using γ.
Notice here we are not assuming that γ is a geodesic arc.

Now fixing the one endpoint P0, and moving the other endpoint, we
may continuously deform γ to a fixed geodesic segment from P0 to a
point in a small neighborhood of P0. The family of arcs along this path
all determine double covers by a slit construction and thus all belong
to the same connected component of M. Thus any two double covers
branched over P0 all belong to the same component. �

Let H(β) be a stratum of the moduli space of abelian differentials
of genus g and D be the SL(2, R)-orbit of a Veech surface (X, ω). The
moduli space MD(β) ⊂ H(β) of all possible coverings of surfaces in D is
a closed SL(2, R)-invariant orbifold. Eskin-Marklof-Morris [EsMaMo]
proved an analogue of Ratner’s theorem for the action of the horocycle
flow on MD(β). They classified the invariant measures and the orbit
closures. We state a very weak version of their result which is enough
for our purpose.

Theorem 2.4 (Eskin-Marklof-Morris [EsMaMo]). Assume (X, ω) is a

Veech surface and suppose that (X̂, ω̂) ∈ H(β) is obtained from (X, ω)
by a slit construction. Then the SL(2, R)-orbit of any translation sur-

face in MD(β) that is not a Veech surface is dense in the connected

component of MD(β) that contains it.

2.6. Non uniquely ergodic directions. Let (X, ω) be a translation
surface, γ be a dividing geodesic curve on X such that X \ γ has two
connected components Ω1, Ω2. The triple (Ω1, Ω2, γ) is a splitting of
(X, ω).

The following theorem gives a criterion to get nonuniquely ergodic
directions:

Theorem 2.5 (Masur-Smillie [MaSm]). Let (Ωn
1 , Ω

n
2 , γn) be a sequence

of splittings of (X, ω) and assume the directions of the holonomy vectors

γn converge to some direction θ. Let hn be the component of γn in the

direction perpendicular to θ and an = area(Ωn
1∆Ωn+1

1 ), the area of the

regions exchanged between consecutive splittings. If
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(1)
∞

∑

n=1

an < ∞,

(2) there exists c > 0 such that area(Ωn
1 ) > c, area(Ωn

2 ) > c for all

n, and

(3) lim
n→∞

hn = 0,

then θ is a nonergodic direction.

In the sequel, we will construct uncountably many sequences of split-
tings satisfying the above three conditions with distinct limiting direc-
tions θ. As there are only countably many nonminimal directions,
there must be uncountably many minimal and non uniquely ergodic
directions.

3. Preliminary lemmas

3.1. Parallelograms and change of area. Let (X, ω) be a Veech
surface, σ a slit on X joining a singularity P0 to another point P . Let
(X̂, ω̂) be the cover of X obtained by gluing two copies of X together

along σ. We will call (X̂, ω̂) the cover induced by the slit σ. Let σ̂1, σ̂2

the two copies of σ on X̂. Let σ̂ = σ̂1 − σ̂2 the separating curve on
X̂ which divides X̂ into components Ω1, Ω2. Suppose σ is contained
in a cylinder C′ such that P0 is on one component of the boundary of
C′ and P is on the other. Note we are not assuming C′ is a maximal
cylinder–the boundary component that contains P will not contain any
singularities. Suppose σ′ is another segment of constant slope in C′ also
joining P0 to P . Assume σ and σ′ intersect an odd number of times in
their interior.

Lemma 3.1. The two lifts σ̂′
1, σ̂

′
2 of σ′ also divide X̂ into two compo-

nents Ω′
1, Ω

′
2 and either area(Ω1∆Ω′

1) ≤ 2 area(C′) or area(Ω1∆Ω′
2) ≤

2 area(C′).

Proof. Let m be the number of intersections. We have σ−σ′ is homol-
ogous to (m + 1)β, where β is the core curve of C′. Since m is odd, d

m + 1 is even, and so the lift of (m + 1)β is m+1

2
β̂, where β̂ is a closed

curve. Then σ̂1 is homologous to σ̂′
1 + m+1

2
β̂ and σ̂2 is homologous to

σ̂′
2 + m+1

2
β̂. Since σ̂1 is homologous to σ̂2, we have σ̂′

1 homologous to
σ̂′

2 which implies the first statement.
We prove the second statement. The intersections of σ′ with σ di-

vides each into m+1 segments of equal length. There are m+1

2
congruent

parallelograms Pj in C′ \ (σ ∪ σ′) such that
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• each segment of σ and each segment of σ′ lies on the boundary
of exactly one parallelogram (see figure 3).

• a point in any parallelogram can be joined to a point in any
other by a path that crosses σ ∪ σ′ an even number of times.

Figure 3. change of area

Lift these parallelograms to parallelograms P̂i in X̂. The conditions
mean that all parallelograms belong to (Ω1 ∩ Ω′

1) ∪ (Ω2 ∩ Ω′
2) or they

all belong to (Ω1∩Ω′
2)∪ (Ω2∩Ω′

1). That is to say, in the first case they
belong to Ω1∆Ω′

2, and in the second to Ω1∆Ω′
1. Every other point of

X̂ belongs to Ω1∆Ω2 in the first case and Ω1∆Ω′
2 in the second. Since

the sum of the areas of the parallelograms on X is at most the area of
C′, we have the result. �

Definition 3.2. We will denote by a(σ, σ′), the minimum of the two

areas in the conclusion of the last lemma and call it the change in area.

Definition 3.3. If σ is a slit contained in a saddle connection γ then

the ratio of σ is defined to be the length of σ divided by the length of

γ. If σ is not contained in a saddle connection its ratio is taken to be

zero. The ratio of σ will be denoted by ρ(σ).

Lemma 3.4. Let (X, ω) be a Veech surface of area one, σ a slit on

(X, ω) that lies on a saddle connection γ, and (X̂, ω̂) the induced cov-

ering by σ. We assume that the horizontal direction is a periodic di-

rection and that γ crosses k horizontal cylinders each of them at most
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ℓ times. We also assume that σ is contained in a maximal horizontal

cylinder C1. Let C′
1 be the smallest horizontal subcylinder of C con-

taining σ and T the affine Dehn twist in the cylinder C′
1. Let σn be

the image of σ under T 2n. Then the change of area a(σ, σn) satisfies

a(σ, σn) ≤ C(ℓ)ρ(σ) where C(ℓ) is a constant depending only on ℓ.

Proof. The change of area is bounded by twice the area of C′
1, by

Lemma 3.1. Let C1, . . . , Ck be the horizontal cylinders that γ crosses,
h1, . . . , hk are the heights of these cylinders. Let

κ =
max{hi, 1 ≤ i ≤ k}
min{hj , 1 ≤ i ≤ k} .

Let y be the vertical component of hol(σ). We have

area(C′
1) =

y

h1

× area(C1) ≤
y

h1

.

For i = 1 to k, let ai be the number of times that γ crosses Ci. We
recall that ai ≤ ℓ. The vertical component of hol(γ) is a1h1+· · ·+akhk.
Thus

area(C′
1) ≤

y

a1h1 + · · ·+ akhk
× a1h1 + · · ·+ akhk

h1

≤ ρ kℓκ.

The number κ is bounded because, as (X, ω) is a Veech surface, there
are finitely many cusps and, of course, finitely many cylinders in each
cylinder decomposition. Thus κ is bounded by a constant (depending
only on the geometry of the surface X). Therefore there exists C(ℓ)
such that a(σ, σn) ≤ C(ℓ)ρ(σ). �

3.2. Irrationality and small ratios. Lemma 3.4 says that the change
in area is bounded in terms of the ratio of the slit in the case that the
slit is part of a saddle connection. Thus it will be important to find
sequences of slits with small ratio. Lemma 3.5 below gives conditions
under which this is possible. Proposition 3.12 will allow us to find a
cylinder to which Lemma 3.5 can be applied. We will use these ideas
in the proof of Theorem 1.3 where we will show that we can make the
new ratios small in all situations.

Lemma 3.5. Let σ be a slit contained in maximal horizontal cylinder

C and suppose that the vertical component vσ of σ is an irrational

multiple of the height of C. Then, given any δ > 0, there exists an

even n such that the nth twist σn has ratio less than δ.

Proof. Consider the set S of holonomy vectors of all saddle connections
or loops whose vertical components are bounded by vσ

δ
. This set S
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is invariant under the parabolic subgroup U that fixes the horizontal
direction. We claim that S is a finite union of orbits of U .

The generator of U is given by the matrix
(

1 α
0 1

)

where, in the horizontal decomposition into cylinders Ci, there are in-
tegers ni such that α = niCi independent of i. The generator acts on
inverse slopes by translating the fixed amount α. That means every
orbit contains a representive whose inverse slope is between 0 and α.
Since the vertical coordinate of the representative is bounded above,
so is the horizontal coordinate. That means that the holonomy vector
of the representative is bounded. There are only finitely many sad-
dle connections with bounded holonomy, which implies there are only
finitely many orbits under this action of U .

On the other hand we twist σ in a subcylinder whose height is an
irrational multiple of the height C and whose circumference is the same
as that of C. The inverse slope of the resulting σn is

x

y
+ nλα

where x
y

is the inverse slope of σ and λ is irrational. A pair σn, σn′

cannot be in the same U -orbit since the equation (n − n′)λ = m does
not have a solution for n 6= n′. This implies there is some twist σn with
n even so that if σn is part of a saddle connection, then the vertical
component v′ of this saddle connection is greater than vσ

δ
and therefore

the ratio vσ

v′
< δ. �

Definition 3.6. We say two cylinders C1 and C2 in different directions

are rationally related if, after normalizing by the action of SL(2, R) so

that one is horizontal and the other is vertical, the ratio of the height

of C1 to the circumference of C2 and the ratio of the height of C2 to

the circumference of C1 are both rational.

Definition 3.7. Let C be a cylinder and P a singularity on the bound-

ary of C. We define α(P, C) to be the open set of unit tangent vectors

v at P such that an initial segment of v lies in the interior of C.

Definition 3.8. We say cylinders C1, . . . , Cn share an angle at P if P
is on the boundary of each and ∩n

i=1α(P, Ci) 6= ∅.
Given a maximal cylinder C, let C(Q) denote the set of points in

the interior of C that are periodic under the action of an affine Dehn
twist in C.
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Lemma 3.9. Let C1 and C2 are cylinders in different directions that

share an angle at P . Let C ′
2 be the image of C2 under a parabolic

element that stabilizes the direction of C1 and let C ′
1 be the image of C1

under a parabolic element that stabilizes the direction of C2. Suppose

that there is a point Q ∈ C1(Q)∩C ′
1(Q)∩C2(Q)∩C ′

2(Q) and such that

there is a segment from P to Q contained in C1 ∩ C ′
1 ∩ C2 ∩ C ′

2. Then

C1 and C2 are rationally related.

Proof. Let α be the component of α(P, C1) ∩ α(P, C2) containing the
initial direction of this segment. After a normalization using GL(2, R)
we may assume C1 is represented by a horizontal unit square and C2 is
vertical and choose local coordinates so that any v ∈ α has an initial
segment in the first quadrant with P at the origin. Suppose Q ∈
C1(Q) ∩ C ′

1(Q) ∩ C2(Q) ∩ C ′
2(Q) lies in the first quadrant and has

coordinates (x0, y0).
Since (x0, y0) ∈ C1(Q), we have y0 ∈ Q. Let x1 be the maximum

length of a horizontal arc contained in C2. Equivalently, this is the
height of the vertical cylinder C2. Since (x0, y0) ∈ C2(Q), we have
x0

x1

∈ Q. Since C1 is a square, the inverse slope of C ′
2 is a nonzero

integer n so that the line of the same slope containing (x0, y0) is given by
x−ny = x0−ny0. The x intercept is x0−ny0 and since (x0, y0) ∈ C ′

2(Q),
we have

x0 − ny0

x1

∈ Q,

which implies y0

x1

∈ Q, and thus x1 ∈ Q and also x0 ∈ Q. Similarly,,

the slope of C ′
1 is a nonzero integer multiple n′ of y1

x1

where y1 is the

length of the core curve of C2. The line through (x0, y0) of the same
slope is given by x1y − n′xy1 = x1y0 − n′x0y1. Since (x0, y0) ∈ C ′

1(Q),
the y-intercept

y0 −
n′x0y1

x1

∈ Q

so that y1 ∈ Q. Since x1 ∈ Q as well, this means C1 and C2 are
rationally related. �

Definition 3.10. Assume that C1 and C2 are rationally related cylin-

ders. A direction is said to be rational with respect to the pair (C1, C2)
if its slope becomes rational, after normalizing by the action of SL(2, R)
so that C1 is horizontal and C2 is vertical and the core curves of both

cylinders are of rational length.

Lemma 3.11. Let (X, ω) be a non-arithmetic Veech surface. For any

singularity P there are cylinders Ci, i = 1, . . . , n, n ≤ 4 each containing

P on its boundary such that
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• ∩n
i=1α(P, Ci) 6= ∅.

• for any sufficiently small neighborhood V of P ,

∩n
i=1Ci(Q) ∩ V = ∅.

Proof. Let C1, C2 be cylinders sharing an angle at P . Let α be any
component of α(P, C1)∩α(P, C2). By interchanging indices if necessary
we may normalize so that C1 is a horizontal cylinder represented by a
unit square and C2 is vertical. Choose coordinates so that P is at the
origin and α is the first quadrant. Let γi, i = 1, 2 be the generators of
the parabolic subgroups stabilizing the direction of Ci such that each
has positive translation length. Let C ′

1 = γ2(C1) and C ′
2 = γ−1

1 (C2).
Then

α ⊂ α(P, C ′
1) ∩ α(P, C ′

2).

We may assume C1 and C2 are rationally related, for otherwise we are
done by Lemma 3.9.

Claim. There exists a periodic direction with irrational slope. Sup-
pose not. First note that the saddle connections on the boundary com-
ponents of C1 have rational length; for otherwise, since the height of the
cylinder is 1, there would exist a saddle connection with irrational slope
crossing C1. Suppose a horizontal cylinder shares a (rational length)
saddle connection with C1. Then an elementary calculation shows in
fact that all of the saddle connections on its boundary have rational
length and the cylinder has rational height. Since the surface is con-
nected, it follows that every horizontal saddle connection has rational
length and the heights of all of the horizontal cylinders are rational.
But then (X, ω) can be square-tiled, a contradiction. This proves the
claim.

By the claim we can choose a periodic direction with irrational slope
λ with respect to C1 and C2. We can assume this slope is negative.
Then choose a cylinder C3 in that direction such that α(P, C3) contains
α. Let γ3 be the generator of the parabolic in that direction with
positive translation length, and set C ′′

1 = γ3(C1). Set C ′
3 = γ−1

1 (C3).
We may assume C1 and C3 are rationally related, for otherwise we are
again done.

Let V be any ball of radius ǫ centered at P such that ǫ is less than
the minimum of the heights of all seven cylinders

C1, C
′
1, C

′′
1 , C2, C

′
2, C3, C

′
3.

Suppose (x0, y0) ∈ C1(Q)∩C3(Q)∩V . The equation of the line through
(x0, y0) in the direction of C3 is given by

(y − y0) = λ(x − x0).
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Because (x0, y0) ∈ C3(Q), the x-intercept is rational. Since 0 6= y0 ∈ Q,
this implies that x0 is irrational, so that (x0, y0) 6∈ C2(Q). �

Proposition 3.12. For any singularity P there is a neighborhood V
of P and a finite collection {Ci}n

i=1 of cylinders with P on their bound-

ary such that for any Q ∈ V there is a cylinder Ci in the collection

containing the segment from P to Q and such that Q /∈ Ci(Q).

Proof. We will construct the collection of cylinders inductively. By
Lemma 3.11 there is some neighborhood V1 of P and C1

1 , . . . , C
1
4 such

that ∩4
i=1C

i
1(Q)∩V1 = ∅ and ∩4

i=1α(P, Ci) 6= ∅. Let α1 be a component
of the latter intersection. Fix a small ǫ > 0. Inductively suppose we
have constructed an angle αi at P , a collection of cylinders Ci

1, . . . , C
i
4

and a neighborhood Vi of P such that

∩4

j=1C
i
j(Q) ∩ Vi = ∅.

Let v−
i , v+

i be the tangent vectors that bound the angle αi, oriented
counterclockwise. We will now construct a further collection of cylin-
ders Ci+1

1 , . . . , Ci+1

4 .
Let v be the direction of some saddle connection inside αi within ǫ of

v+

i . Let γv be the generator of the parabolic in the direction of v with
positive translation length. For n a sufficiently large negative number,
γn(v−

i ) is within ǫ of v and the angle αi+1 between γn(v−
i ) and γn(v+

i )
is at least π − ǫ. Let

Ci+1

j = γn(Ci
j), j = 1, . . . , 4,

and let Vi+1 = γn(Vi). Note that

Ci+1

j (Q) = γn(Ci
j(Q)).

Therefore by the induction hypothesis

∩4

j=1C
i+1

j (Q) ∩ Vi+1 = ∅
and the construction is complete.

Clearly for ǫ sufficiently small, the angle conditions above imply there
is N depending only on the cone angle at P such that every unit vector
is contained in ∪N

i=1αi. Let C1, . . . , Cn be given by ∪N
i=1 ∪4

j=1 Ci
j. Let

V be a ball of radius r centered at P , with r chosen small enough, so
that V ⊂ ∩N

i=1Vi, and such that r is smaller than the minimum height
of the cylinders Ci.

Given Q ∈ V , there is a unique segment contained in V joining P
to Q. Let i be any index such that αi contains the initial direction
of this segment. Since ∩4

j=1C
i
j(Q) ∩ Vi = ∅, there exists a j such that

Q /∈ Ci
j(Q). �
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Corollary 3.13. Given a compact set K in SL(2, R)/ SL(X, ω) there

exists a δ > 0 such that for any (X, ω) ∈ K and for any slit σ ⊂ (X, ω)
of length less than δ with one endpoint a zero, there exists a cylinder C
such that σ ⊂ C and such that the other endpoint of σ is not in C(Q).

Proof. For each (X, ω) ∈ K, let C1, . . . , Cn be the cylinders given by
Proposition 3.12. Let h be the minimum height of the cylinders. Since
the property of being in C(Q) is SL(2, R)-equivariant, there is a neigh-
borhood W of the identity in SL(2, R) such that the neighborhood
A(V ) and the collection of cylinders

{A(Ci) : A ∈ W}
satisfy the conclusion of Proposition 3.12 on the surface A(X, ω) and
the minimum height of the cylinders is at least h/2. Now cover K with
such open sets and take a finite subcover. Take δ to be the minimum
height of any cylinder associated with an element of the finite subcover.

�

4. Proof of Theorem 1.3

Let D be the SL(2, R) orbit of (X, ω). Let K ⊂ D consist of those
surfaces that have a saddle connection of length 1. We first show K
is compact. Given a Veech surface (X0, ω0) ∈ K, let γ be a saddle
connection of length one. Since there are only a finite number of ra-
tios of lengths of saddle connections in any cylinder decomposition,
the circumferences of the cylinders in the direction of γ have lengths
bounded above. Since the area of the surface is one, and there are only
finitely many ratios of heights of cylinders, the heights are bounded
below. It follows that the length of any saddle connection is bounded
below. This shows K is a compact set. Now starting with the sur-
face (X, ω) the idea is to apply Lemma 3.5 to inductively construct
sequences of slits determining small changes of area. In order to apply
that Lemma we need to know that there is a slit with small ratio so
that the construction can begin. The next Lemma says that this is
possible.

Lemma 4.1. Let (X, ω) be a non-arithmetic Veech surface. Let σ be

a slit joining a zero P0 to an aperiodic point P1. Let (X̂, ω̂) be the

induced cover by σ. For any δ > 0 there exists a slit σ′ on X whose

induced cover is also (X̂, ω̂) and whose ratio ρ(σ′) < δ.

Proof. Let D be the SL(2, R)-orbit of (X, ω). Let MD(β) be the moduli
space of double covers over D, branched over a zero and a regular
point. Since P1 is an aperiodic point, (X̂, ω̂) is not a Veech surface.
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By Theorem 2.4 the SL(2, R)-orbit of (X̂, ω̂) is dense in the connected
component of MD(β) containing it.

Let K ′ be a compact neighborhood of (X, ω) in D. The lengths of
closed curves and saddle connections on surfaces in K ′ are bounded
below by some δ0 > 0. Each surface in K ′ is of the form A(X, ω)
for some A that lies in a compact neighborhood of the identity in
SL(2, R). Let L be a set of covers in MD(β) obtainable by applying
the slit construction to a surface A(X, ω) in K ′ along a slit of length
less than δδ0 with one endpoint at AP0. Then since the length of saddle
connections of surfaces in K ′ is at least δ0, each surface in L is induced
by a slit whose ratio is less than δ. By Lemma 2.3, L lies in the same
connected component of MD(β) that contains the given cover (X̂, ω̂).
Moreover, since L has nonempty interior, there is a surface in L that
lies in the SL(2, R)-orbit of (X̂, ω̂). Since the SL(2, R) action respects

the slit construction as well as ratios of slits, (X̂, ω) is induced by a slit
of ratio less than δ. �

The following Proposition inductively constructs sequences of slits
with the desired properties.

Proposition 4.2. Let (X̂, ω̂) be a cover over the non-arithmetic Veech

surface (X, ω) induced by the slit σ. For each n, there exist 2n slits

σj
n, j = 1, . . . , 2n determining partitions Ωj

n, Ω
j′

n of (X̂, ω̂) such that for

each σj
n, called the parent, there are a pair of slits σi

n+1, i = 1, 2 called

the children, with

• the angle θn = ∠σi
n+1σ

j
n between each parent and its two children

satisfies θn ≤ 2−n

|σj
n|2

.

• Each of the 2n+1 possible angles θn satisfy θn ≤ δn/4 where

δn = mini,j ∠σi
nσ

j
n is the minimum angle between any two slits

at level n.

• the change of areas satisfy a(σj
n, σi

n+1) ≤ 2−n−1.

Proof. The slits are constructed inductively. Lemma 4.1 allows us to
find a first slit σ0 such that

ρ(σ0) < δ

where δ is the constant given by Corollary 3.13 applied to the set K.
Now suppose we have constructed 2n slits σj

n at level n.
There are two cases. If the slit σj

n is on a saddle connection γ, we use
the SL(2, R)-action to make its length one so that the corresponding
surface is in K. Since ρ(σj

n) < δ, Corollary 3.13 implies there is a
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cylinder C containing σj
n so that by Lemma 3.5 we can twist in a sub-

cylinder of C to form a pair of new slits σi
n+1 with ratio

ρ(σi
n+1) < min(δ,

1

2n+1C(ℓ)
)

where C(ℓ) is the constant in Lemma 3.4 and ℓ is the maximum number
of times γ crosses a cylinder in the same direction as C. By Lemma 3.4
the change of area satisfies

a(σj
n, σ

i
n+1) ≤ 2−n−1.

Since σj
n lies on a saddle connection γ, there exists a Dehn twist τσj

n

in that direction which fixes σj
n. Applying the twist to a power k,

and setting σi
n+1 = τk

σj
n

(ui
n+1), the direction of σi

n+1 converges to the

direction of σj
n as k → ∞. Thus we can choose k large enough so that

the first two conclusions in the Proposition hold as well. Note that as
τk
σj

n

is an affine map, it preserves areas.

The second case is if σj
n is not on a saddle connection. Inductively,

let θn be the direction of σj
n. We apply the circular flow Rπ/2−θ so that

σj
n is vertical and then the Teichmüller geodesic flow gt. As (X, ω) is a

Veech surface, the linear flow in the direction θ is uniquely ergodic and
therefore by Theorem 3.8 of [MaTa], the geodesic gt Rπ/2−θ is recurrent.
For a sequence tj → ∞, the slit length |gtj Rπ/2−θ(σ

j
n)| → 0, but all

the other parameters are bounded away from 0. Consequently, for a
sequence tj → ∞, the surface gtj Rπ/2−θ(X̂, ω̂) contains a maximal
cylinder C that contains gtj Rπ/2−θ(σn) and which has bounded height,
and length bounded away from 0. Thus there is a subcylinder C′ which
contains gtj Rπ/2−θ(σ

j
n) which has area approaching 0 as tj → ∞.

Now, we apply a Dehn twist along C′ an even number of times and get
a pair of new slits σi

n+1. The change of area from the two consecutive

partitions on gtj Rπ/2−θ(X̂, ω̂) is bounded by 2 area(C′) by Lemma 3.1.
As the construction is SL(2, R) equivariant, we can choose tj so that
the change of area

a(σj
n, σ

i
n+1) ≤ 2−n−1.

Moreover it is easily checked that the angle between successive slits σj
n

and σi
n+1 is

O

(

1

|σj
n|etj/2

)

,

which implies that the first two conclusions in the Proposition hold. �

To prove Theorem 1.3 we create a binary rooted tree of slits. At level
n we have 2n slits, where each such slit has two children at level n + 1.
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The lengths |σn| of the slits are increasing and |σn| → ∞. Consider
any geodesic σ1, σ2, . . . of slits in the tree. The first condition in the
above Lemma says that for i ≥ n,

|θi| = ∠σiσi+1 ≤
1

2i|σi|2
≤ 1

2i|σn|2
.

This shows that the sequence of angles form a Cauchy sequence and
hence converge to a limiting direction. The second condition on an-
gles in Proposition 4.2 implies that distinct geodesics in the tree have
distinct limiting directions. Hence there are an uncountable number
of limiting directions. Since there are only countably many directions
which are not minimal directions, if one can prove that each direc-
tion is not ergodic then we will have found uncountably many minimal
nonergodic directions.

To do this we need to check the conditions of Theorem 2.5. The
area condition (1) is implied by the third condition in Proposition 4.2.
Condition (2) is automatic since the partitions are symmetric; the com-
ponents have equal area. We check condition (3). By a rotation we can
assume the limiting direction is vertical. Let αn be the angle σn makes
with the vertical direction. By the first conclusion of Proposition 4.2,
summing the infinite series, we have

|αn| ≤
∣

∣

∣

∣

∣

∞
∑

i=n

θi

∣

∣

∣

∣

∣

≤ 1

2n−1|σn|2
.

Now letting hn, vn be the horizontal and vertical holomony of the slit
σn, we have

|hn|
|vn|

= tan(αn) ≤ 1

|σn|2
≤ 1

|vn|2
.

This implies hn → 0 as required.
Therefore, we can produce an uncountable number of limiting direc-

tions satisfying the criteria in Theorem 2.5. This finishes the proof of
Theorem 1.3.

We note that Theorem 1.1 is a special case of Theorem 1.3 applied
when P is a connection point.

5. Proof of Theorem 1.2

Let ∆ be the rational billiard table of the (2π
5
, 3π

10
, 3π

10
) triangle. The

associated translation surface (X̂, ω̂) obtained by a standard unfolding
process is a branched double cover obtained by a slit construction using
a slit joining the centers of the double regular pentagon (X, ω). See
Figure 4.
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Figure 4. The Veech surface (X, ω) represented as a
double pentagon with opposite sides identified. The cen-
ters of the regular pentagons are joined by a horizontal
slit which induces the cover (X̂, ω̂) associated with the
rational billiard table of the (2π

5
, 3π

10
, 3π

10
) isosceles triangle.

First, we prove topological dichotomy. Let P and Q denote the
centers of the pentagons. The points P and Q are connection points
(see [HuSc]). There are interchanged by the hyperelliptic involution.

A saddle connection γ̂ on X̂ projects to γ on X which is either

(1) a saddle connection, or
(2) a (regular) closed loop, or
(3) a segment joining P (resp Q) to a zero, or
(4) a segment joining P to Q (resp. Q to P ).

In case 1 or 2, there is nothing to prove. The direction of γ is
periodic on X as X is a Veech surface; consequently the direction of γ̂
is periodic on X̂. In case 3, γ is contained in a saddle connection as
P is a connection point. Thus the direction is periodic. In case 4, the
image of γ under the hyperelliptic involution is a segment γ′ parallel to
γ joining P to Q. Thus γ ∪ γ′ is a closed loop on X and therefore the
direction of γ is periodic. This proves that (X̂, ω̂) satisfies topological
dichotomy.

Now we show that (X̂, ω̂) does not satisfy strict ergodicity. By a
slit we shall mean any segment that joins P and Q without passing
through the zero and whose midpoint is a Weierstrass point. As noted
above, the direction of any slit is periodic. Hence, it either lies on a
saddle connection or a closed loop. We define the ratio of a slit to be
the ratio of its length to that of the loop or saddle connection that it
lies on.
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To get started, we again need to find a slit with small ratio. Again let
D be the SL(2, R)-orbit of the double pentagon (X, ω). Let MD(β) be
the moduli space of branched double covers over surfaces in D branched
over 2 regular points. It lies in the space H(2, 1, 1). Let M0 ⊂ MD(β)
denote the closed SL(2, R)-invariant subset consisting of double covers
branched over two points that are interchanged by the hyperelliptic
involution.

It was shown in [EsMaMo] that the SL(2, R)-orbit of (X̂, ω̂) is dense
in the connected component of M0 that contains it. Exactly the same
argument as in Lemma 2.3 shows that every branched cover in MD(β)
is given by a slit construction and if two surfaces are given by a slit
construction in which the slits pass through Weierstrass points that
correspond under the SL(2, R) action, then they lie in the same con-

nected component of M0. Since (X̂, ω̂) can be represented as a slit
construction through any of the five regular Weierstrass points, M0 is
connected. It follows that the SL(2, R)-orbit of (X̂, ω̂) is dense in M0

and an argument similar to that in Lemma 4.1 implies that we can find
a slit with small ratio.

For the induction step, given a slit σ of small ratio, we need to
show that there is a cylinder containing the slit so that we can apply
Lemma 3.5 to get new slits with arbitrarily small ratio. To accomplish
this, we will exploit properties of (X, ω) coming from the fact that
it belongs to the stratum H(2) (see § 2.3 for the definitions of the
combinatorial properties of periodic directions in H(2)). There are five
cases. We refer to Figure 2

The first case is if σ lies on a saddle connection γ and ρ(σ) /∈ Q. Let
(C1, C2) be the cylinder decomposition in the direction of γ where C1

is the non self-gluing cylinder and C2 the self-gluing one. Then γ is a
saddle connection on the boundary of C2 and the midpoint of γ is a
Weierstrass point. The closure of C2 is a slit torus T containing γ in
its interior. Lemma 3.5 can now be applied to any cylinder C ⊂ T that
is crossed by γ exactly once.

The second case is if σ lies on a saddle connection γ and ρ(σ) ∈ Q.
Let (C1, C2) be the decomposition in the direction of γ as in the in the
first case. Let γ′′ be a saddle connection that crosses C2 exactly once,
joining an endpoint of γ to itself. The direction of γ′′ determines a
cylinder decomposition and γ crosses one of the cylinders C ′′ exactly
once. We may Dehn twist γ about the core curve of C ′′ exactly 3
times to produce a saddle connection γ′ contained in C2 that crosses γ
twice in its interior while missing the midpoint of γ. Let (C ′

1, C
′
2) be the

decomposition in the direction of γ′. Note that γ crosses both cylinders
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and σ is contained in the interior of one of them. Let us normalize so
that γ is horizontal and γ′ is vertical. Let h′

i be the horizontal distance
across C ′

i, i.e. its height. Then |γ| = ah′
1+bh′

2 for some positive integers

a and b. Since (X, ω) is non-arithmetic, the ratio
h′

1

h′

2

is irrational. Since

ρ(σ) ∈ Q, the ratio of ρ(σ) to h′
i is irrational and Lemma 3.5 can now

be applied to the cylinder C ′
i that contains the σ.

The third case is if σ lies on a loop γ that is the core of a non self-
gluing cylinder and ρ(σ) /∈ Q. Let (C1, C2) be the decomposition in the
direction of γ, where, by hypothesis, γ is the core of C1. Let C ′

1 be any
non self-gluing cylinder disjoint from C1 lying in the complementary
slit torus. Let C ′

2 be the other cylinder in the direction of C ′
1 and note

that γ crosses only C ′
2, perhaps multiple times. Lemma 3.5 can be

applied if the slit lies in the interior of C ′
2. However, it may happen

that the slit crosses the boundary of C ′
2, in which case there is a unique

point of intersection, namely the Weierstrass point at the midpoint of
the slit. In this situation, we apply Lemma 3.5 to half of the slit, then
use the hyperelliptic involution to extend and get a new slit. It remains
true that the new slit can be chosen to have arbitrarily small ratio and
that the area exchange can be made as small as desired.

The fourth case is if σ lies on a loop γ that is the core of a non self-
gluing cylinder and ρ(σ) ∈ Q. Let (C1, C2) be the decomposition in the
direction of γ, where, by hypothesis, γ is the core of C1. We wish to
find a saddle connection γ′ that is disjoint from the slit σ and crosses
γ exactly once. Indeed, let us use the SL(2, R) action to normalize so
that γ is horizontal and C2 is a represented by a rectangle such that
the gluing map identifying the segments on its boundary is given by a
vertical translation. Then C1 may be represented by a parallelogram
whose top boundary is glued to the free part of the bottom boundary
of C2 and whose bottom boundary is glued to the free part of the top
boundary of C2. Furthermore, we may assume the parallelogram has a
pair of edges with positive slope such that the zero at the lower right
corner lies to the right of the left edge of C2. See Figure 5. Let γ′ be the
saddle connection that joins the lower right corner of the parallelogram
to the zero in the interior of the top edge of the rectangle representing
C2. It lies in the same homotopy class as the concatenation of the
saddle connection along the right edge of the parallelogram followed
by the saddle connection that crosses C2 joining the left endpoint of
self-gluing segment on the boundary of C2. Note that γ′ does not pass
through a Weierstrass point in its interior and crosses γ exactly once,
as desired. Now, let (C ′

1, C
′
2) be the decomposition in the direction of
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Figure 5. The surface (X, ω) is normalized to have
a horizontal cylinder decomposition (C1, C2) where the
self-gluing cylinder C2 is represented by a rectangle such
that the gluing map identifying horizontal segments on
the boundary of C2 is given by a vertical translation. The
core curve of C1 and a saddle connection that crosses C1

and C2 are shown to cross at a point that is not a regular
Weierstrass point (hollow dots).

γ′. Note that γ crosses both cylinders C ′
i since it crosses γ′. The rest

of the argument now follows the same pattern as in the second case.
The last case is if σ lies on a loop γ that is the core of a self-gluing

cylinder. Let (C1, C2) be the decomposition in the direction of γ, where,
by hypothesis, γ is now the core of C2. We normalize as in the previous
case so that C2 is a rectangle and the gluing map identifying edges on its
boundary is a vertical translation. Let (C ′

1, C
′
2) be the vertical cylinder

decomposition where C ′
1 is the non self gluing cylinder contained in the

closure of C2. Then γ crosses C ′
1 exactly once and C ′

2 some n′ times.
The length of γ equals h′

1 + n′h′
2 where h′

i is the horizontal distance
across C ′

i.
Let (C ′′

1 , C ′′
2 ) be the decomposition in the direction of a diagonal of

the rectangle representing C2. Again γ crosses C ′′
1 once and C ′′

2 some n′′

times. The length of γ is h′′
1 +n′′h′′

2 where h′′
i is the horizontal distance

across C ′′
i . Note that h′

1 = h′′
1 because C ′

1 and C ′′
1 are related by a Dehn

twist in C2, not necessarily induced by an element of SL(X, ω). See
Figure 6.

Notice there are two Weierstrass points on γ, one of which lies in
C ′′

1 ∩ C ′
2 and the other is in C ′

1 ∩ C ′′
2 . If the ratio of the length of σ

to h′
1 is irrational, we can apply Lemma 3.5 to whichever of C ′

1 or C ′′
1

that contains σ. Otherwise, the ratios of the length of σ to h′
2 and

to h′′
2 are both irrational because both

h′

1

h′

2

/∈ Q and
h′′

1

h′′

2

/∈ Q. Hence,

Lemma 3.5 can be applied to whichever of C ′
2 or C ′′

2 that contains σ.
This completes the proof of Theorem 1.2.
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Figure 6. The horizontal cylinders (C1, C2) are repre-
sented the same way as in Figure 5. The vertical cylin-
ders (C ′

1, C
′
2) are such that the core curve of C2 crosses

the non self-gluing cylinder C ′
1 exactly once. The shaded

region indicates the non self-gluing cylinder of the de-
composition (C ′′

1 , C ′′
2 ) in the direction of the diagonal of

C2 of positive slope. Note that one Weierstrass point is
contained in the interior of C ′′

1 ∩C ′
2 while the other is in

C ′
1 ∩ C ′′

2 .
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