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Abstract

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the
lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending
laminations provide an effective boundary theory that encodes much of its asymp-
totic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theo-
rem 1.1) for the full-measure set of rays that recur to the thick part, and we show that
the association of an ending lamination embeds asymptote classes of recurrent rays
into the Gromov-boundary of the curve complex C (S). As an application, we estab-
lish fundamentals of the topological dynamics of the Weil-Petersson geodesic flow,
showing density of closed orbits and topological transitivity.
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1 Introduction
This paper is the first in a series considering the asymptotics of geodesics in the Weil-
Petersson metric on the Teichmüller space Teich(S) of a compact surface S with negative
Euler characteristic.

In many settings, measured laminations and foliations encode the asymptotic geometry
of Teichmüller space. As key examples, one has:

1. Thurston’s natural compactification by projective measured laminations [Th3, Bon2],

2. invariant projective measured foliations for Teichmüller rays [Ker], and

3. the parametrization of Bers’s compactification by end-invariants (see [Min1, BCM]).

In the series, we seek a similar connection with laminations to describe asymptotics of
Weil-Petersson geodesics in Teichmüller space: we define a notion of an ending lamination
for a Weil-Petersson geodesic ray and investigate its role as an invariant for the ray.

The present paper employs ending laminations for geodesic rays to develop a boundary
theory for the Weil-Petersson metric. We establish that the ending lamination is a complete
invariant for recurrent rays, namely, those whose projections to the moduli space M (S)
visit a fixed compact set at a divergent sequence of times. In particular, it follows that any
two such rays starting at the same basepoint with the same ending lamination are identical
up to parametrization. Despite the lack of naturality described in [Br2], this boundary the-
ory establishes fundamentals of the topological dynamics of the Weil-Petersson geodesic
flow on the unit tangent bundle to the moduli space, showing

(I.) closed Weil-Petersson geodesics are dense in T 1M (S) (Theorem 1.8), and

(II.) there is a dense Weil-Petersson geodesic in T 1M (S) (Theorem 1.9).

To the extent the ending lamination determines the ray one can employ properties of lami-
nations to understand Weil-Petersson geometry. To this end, we prove

Theorem 1.1. (RECURRENT ENDING LAMINATION THEOREM) Let r be an infinite length
Weil-Petersson geodesic ray that is recurrent, and let λ (r) be its ending lamination. If r′
is any other infinite length geodesic ray with ending lamination λ (r′) = λ (r), then r is
strongly asymptotic to r′.

Here, we say r and r′ are strongly asymptotic if there are parametrizations for which
the distance between the rays satisfies

lim
t→∞

d(r(t),r′(t)) = 0.
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In particular, the negative curvature of the Weil-Petersson metric guarantees that if r(0) =
r′(0), then the rays are identical if parametrized by arclength.

The ending lamination λ (r) for a ray r arises out of the asymptotics of simple closed
curves with an a priori length bound. Recall that by a theorem of Bers, there is a constant
LS depending only on S so that for each X ∈ Teich(S) there is a pants decomposition by
geodesics on X so that each such geodesic has length satisfying

`X(γ)≤ LS.

We call such a γ a Bers curve for X .
Given a Weil-Petersson geodesic ray r, the ending lamination λ (r) is a union of limits

of Bers curves for surfaces Xn = r(tn) along the ray. We give a precise description in
section 2 and the proof that λ (r) is well defined.

In Proposition 4.3, we show that for a recurrent ray r, the ending lamination λ (r) fills
S. As such λ (r) determines a point in E L (S), the ending laminations on S, naturally the
Gromov boundary for the curve complex C (S) (see [MM1, Kla, Ham]). We remark that
Theorem 1.1 determines a preferred subset RE L (S) ⊂ E L (S) of ending laminations
corresponding to recurrent rays in the Weil-Petersson metric. In particular, the ending
lamination determines whether or not a ray is recurrent.

We emphasize that in contradistinction with Teichmüller geometry, where Masur shows
that Teichmüller geodesics with the same vertical foliation are strongly asymptotic when
the foliation is uniquely ergodic [Mas2], there is no assumption in Theorem 1.1 of unique
ergodicity for λ (r). Indeed, in [Br3] examples are presented exhibiting the following be-
havior.

Theorem 1.2 (Brock). For each S with dimC(Teich(S)) ≥ 2, there are recurrent Weil-
Petersson geodesic rays whose ending laminations are non-uniquely ergodic.

Furthermore, the theorem is sharp in the sense that without the assumption of recurrence
examples are known of infinite rays with the same filling ending lamination.

Theorem 1.3 (Brock). There exist distinct Weil-Petersson geodesic rays r and r′ based at
X ∈ Teich(S) with a common ending lamination λ (r) = λ (r′) that fills the surface.

(See [Br3], and compare [Br2, §6]).

Visual boundaries. The negative curvature of the Weil-Petersson metric (see [Tro, Wol3])
provides for a compactification of Teich(S) by geodesic rays emanating from a fixed base-
point X , the visual sphere at X . Work of the first author (see [Br2]) demonstrates that the
compactification of Teich(S) is basepoint dependent and, moreover, that the mapping class
group fails to extend continuously to the compactification.
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Standard arguments for topological transitivity and the density of closed orbits that arise
in Riemannian manifolds of negative curvature involve the use of the boundary at infinity
for the universal cover and the natural extension of the action of the fundamental group to
the boundary.

The principal source of difficulty with carrying out such a line of argument here is
precisely the source of the basepoint dependence shown in [Br2]. The lack of completeness
of the metric, due to Wolpert [Wol1], gives rise to finite-length geodesic rays that leave
every compact subset of Teichmüller space, and these finite rays determine a subset of the
boundary on which the change of basepoint map is discontinuous. While such finite rays
prevent the Weil-Petersson metric from exhibiting the more standard boundary structure
arising in the setting of Hadamard manifolds (see [Eb]) we show the infinite length Weil-
Petersson geodesic rays determine a natural boundary at infinity for the Weil-Petersson
completion.

Theorem 1.4. (BOUNDARY AT INFINITY) Let X ∈ Teich(S) be a basepoint.

1. For any Y ∈ Teich(S) with Y 6= X, and any infinite ray r based at X there is a unique
infinite ray r′ based at Y with r′(t) ∈ Teich(S) for each t so that r′ lies in the same
asymptote class as r.

2. The change of basepoint map restricts to a homeomorphism on the infinite rays.

Though the Weil-Petersson completion Teich(S) does not satisfy the extendability of
geodesics requirement for a standard notion of a CAT(0) boundary to be well defined, one
can simply restrict attention to the infinite rays and consider asymptote classes of infinite
rays in the completion of the Weil-Petersson metric, where two half-infinite rays are in
the same asymptote class if they lie in some bounded Hausdorff distance. We denote this
boundary at infinity by ∂∞Teich(S).

Any flat subspace in a CAT(0) space provides an obstruction to the visibility property
exhibited in strict negative curvature, namely, the existence of a single bi-infinite geodesic
asymptotic to any two distinct points at infinity. The encoding guaranteed by Theorem 1.1
of recurrent rays via laminations remedies this conclusion to some degree, as it guarantees
such a visibility property almost everywhere.

Theorem 1.5. (RECURRENT VISIBILITY) Let r+ and r− be two distinct infinite rays based
at X.

1. If r+ is recurrent, then there is a single bi-infinite geodesic g(t) so that g+ = g|[0,∞)
is strongly asymptotic to r+ and g− = g|(−∞,0] is asymptotic to r−. In particular, if
both r+ and r− are recurrent, then g is strongly asymptotic to both r− and r+.
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2. If µ ∈ML (S) has bounded length on r± then it has bounded length on g±.

Theorem 1.4 leads one naturally to the question of whether, as in other compactifica-
tions of Teichmüller space, the laminations associated to serve as parameters. Applying
Theorem 1.1, we find that such a parametrization holds for the recurrent locus.

Corollary 1.6. The recurrent rays are parametrized by their ending laminations: the map
λ that associates to an equivalence class of recurrent rays their ending lamination is a
homeomorphism to the subset RE L (S) in E L (S).

We note that as a consequence of Theorem 1.3 this parametrization fails in general,
even when the ending lamination is filling; the paper [Br3] takes up the question of their
structure.

To describe our strategy further, we review geometric aspects of the Weil-Petersson
metric and its completion.

Weil-Petersson geometry. The Weil-Petersson metric gWP on Teich(S) arises from the
norm

‖ϕ‖WP =
(∫

X

|ϕ|2

ρ

) 1
2

on the cotangent space Q(X) = T ∗X Teich(S) to Teichmüller space, naturally the holomorphic
quadratic differentials on X , where ρ is the hyperbolic metric on X .

A fundamental distinction between the Weil-Petersson metric and other metrics on Te-
ichmüller space is its lack of completeness, due to Wolpert and Chu [Wol1, Chu]. It is nev-
ertheless geodesically convex [Wol4], and has negative sectional curvatures [Tro, Wol3].

The failure of completeness corresponds precisely to pinching paths in Teich(S) along
which a simple closed geodesic on X is pinched to a cusp. It is due to Masur that the
completion Teich(S) is identified with the augmented Teichmüller space and is obtained
by adjoining noded Riemann surfaces as limits of such pinching paths [Mas1]. Via this
identification, then, the completion Teich(S) (with its extended metric) descends to a metric
on the Mumford-Deligne compactification M (S) of the moduli space (cf. [Ab, Brs]).

Because of this failure of completeness, the geodesic flow is not everywhere defined on
T 1M (S); some directions meet the compactification within finite Weil-Petersson distance.
The situation is remedied by the following.

Theorem 1.7. The geodesic flow is defined for all time on a full measure subset of T 1M (S).

As a consequence, we address the question of the topological dynamics of the geodesic
flow on the unit tangent bundle T 1M (S) to the moduli space of Riemann surfaces.
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That the recurrent rays have full measure in the visual sphere allows us to approximate
directions in the unit tangent bundle arbitrarily well by recurrent directions. As a conse-
quence, we have

Theorem 1.8. (CLOSED ORBITS DENSE) Closed Weil-Petersson geodesics are dense in
T 1M (S).

Applying our parametrization by ending laminations of the boundary at infinity, we
may use the stable and unstable laminations for the axes of pseudo-Anosov isometries of
Teich(S) to find based at any X a geodesic ray whose projection to M (S) has a dense
trajectory in the unit tangent bundle.

Theorem 1.9. (DENSE GEODESIC) There is a dense Weil-Petersson geodesic in T 1M (S).

Combinatorics of Weil-Petersson geodesics. While the this paper’s focus on recurrence
establishes the importance of the ending lamination as a tool to analyze Weil-Petersson
geodesics, it does not directly address the connection between the combinatorics of the
lamination (in the sense of [MM2]) and the geometry of geodesics. It is our ultimate goal
to establish a stronger connection along these lines. In the sequel to this paper, [BMM],
we use a typical bounded combinatorics condition (cf. [Min2]) to bound the geometry of
surfaces along a Weil-Petersson geodesic and conversely. We remark that the main theorem
of this paper, Theorem 1.1, is applied in what appears to be a crucial way to establish the
following (see [BMM])

Theorem 1.10. (BOUNDED COMBINATORICS GEOMETRICALLY THICK) For each K > 0
there is an ε > 0 so that if the ending laminations of a bi-infinite Weil-Petersson geodesic
g have K-bounded combinatorics then g(t) lies in the ε-thick part for each t.

A similar statement applies when g is finite or half-infinite. The notion of bounded com-
binatorics refers to the subsurface projections of [MM2] applied to the ending laminations
associated to the forward and backward rays determined by g.

A kind of converse we will prove shows that combinatorics remain bounded along any
geodesic in the thick part.

Theorem 1.11. (THICK GEODESICS COMBINATORIALLY BOUNDED) Given ε > 0 there
is a K > 0 so that if g is any bi-infinite geodesic in the ε thick part of Teich(S), then the
combinatorics of the ending laminations associated to its ends are K-bounded.
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These results give good control over the subset of geodesics with bounded type, and
imply further dynamical consequences involving the topological entropy of the geodesic
flow on compact invariant subsets. We take up this discussion in [BMM].

Questions and Conjectures. We expect in general that the ending lamination should
predict extensive information about bounded and short curves along the ray, as in Theo-
rems 1.10 and 1.11. We make the following conjecture.

Conjecture 1.12. (WEIL-PETERSSON COMBINATORICS) Let g be a bi-infinite geodesic
with ending laminations λ− and λ+ that fill the surface S. For each simple closed curve γ ,
we have the following

1. for each K > 0 there is a δ > 0 so that if inft `g(t)(γ) < δ then there is a subsurface
Y ⊂ S with γ ⊂ ∂Y for which dY (λ−,λ+) > K.

2. for each δ ′ > 0 there is a K′ > 0 so that if there is a subsurface Y ⊂ S with γ ⊂ ∂Y ,
for which dY (λ−,λ+) > K′ then we have inft `g(t)(γ) < δ ′.

The quantities
dY (λ−,λ+)

introduced in [MM2] are combinatorial invariants associated to the pair (λ−,λ+) repre-
senting the distance of their projections to the curve complex of the subsurface Y . These
invariants play the role of the entries in a kind of “continued fraction expansion” for the pair
(λ−,λ+) and are the coefficients for the continued fraction expansion in the case of dimen-
sion one Teichmüller spaces, where they control the behavior of Weil-Petersson geodesics
on the modular surface. We remark that for Teichmüller spaces of complex dimension at
most 3, the conjecture follows from the (relative) hyperbolicity theorems of [BF] and [BM],
but we defer this discussion to the sequel [BMM].

Conjecture 1.12 suggests a strong connection with hyperbolic 3-manifolds with the
homotopy type of a surface, where the same type of combinatorial information controls
the model for the hyperbolic structure on S×R determined by its end-invariants. See
[Min3, BCM].

Connections with ends of hyperbolic 3-manifolds motivate other questions about the
structure of the ending lamination λ (r) for a ray r.

Conjecture 1.13. Let r be a Weil-Petersson geodesic ray along which no simple closed
curve has length asymptotic to zero. Then the ending lamination λ (r) fills the surface.

We establish this conjecture for recurrent rays in Proposition 4.3.
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Plan of the paper. In section 2 we set out necessary background, and give the definition
of ending lamination for a Weil-Petersson geodesic ray, establishing its basic properties.
Section 3 establishes that the geodesic flow is defined for all time on a full measure set
and gives the natural application of the Poincaré recurrence theorem in this setting. Sec-
tion 4 establishes the main theorem, that the ending lamination is a complete invariant for
a recurrent ray, as well deriving important topological properties of the ending lamination
itself that mirror the behavior of ending laminations for hyperbolic 3-manifolds. Finally,
in section 5 we present applications of this boundary theory to the topological dynamics of
the Weil-Petersson geodesic flow.

Acknowledgements. The authors thank the Mathematical Sciences Research Institute for
its hospitality while this work was being completed. As this paper was in its final stages of
completion, the authors learned of an independent proof of Theorem 1.9 for dimension one
Teichmüller spaces due to Pollicott, Weiss and Wolpert [PWW] by an explicit construction.

2 Ending laminations for Weil-Petersson rays
In this section we begin by reviewing some of the notions and results necessary for our
discussion, provide references for background, and give the definition of the ending lami-
nation, establishing its basic properties.

Teichmüller space and moduli space. The Teichmüller space of S, Teich(S), parametrizes
the marked complete hyperbolic structures on int(S), namely, pairs ( f ,X) where

f : int(S)→ X

is a marking homeomorphism to a hyperbolic surface X and ( f ,X) ∼ (g,Y ) if there is an
isometry φ : X → Y for which φ ◦ f is isotopic to g. The mapping class group Mod(S) of
orientation preserving homeomorphisms up to isotopy acts naturally on Teich(S) by pre-
composition of markings, inducing an action by isometries in the Weil-Petersson metric.
The quotient is the moduli space M (S), of hyperbolic structures on int(S) (without mark-
ing), and the Weil-Petersson metric descends to a metric on M (S).

Hyperbolic geometry of surfaces. For all that follows it will be important to have in place
the Theorem of Bers (see [Bus]) that given S, a compact orientable surface of negative
Euler characteristic, there is a constant LS > 0 so that for each X ∈ Teich(S) there is a pants
decomposition PX determined by simple closed geodesics on X so that

`X(γ) < LS
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for each γ ∈ PX . We call the pants decomposition PX a Bers pants decomposition for X and
the curves in such a pants decomposition PX Bers curves for X .

A geodesic lamination λ on hyperbolic surface X ∈ Teich(S) is a closed subset of X
foliated by simple complete geodesics. Employing the natural boundary at infinity for X̃ ,
a geodesic lamination, like a simple closed curve, has a well defined isotopy class on X ,
and we may speak of a single geodesic lamination λ as an object associated to S with re-
alizations on each hyperbolic structure X ∈ Teich(S) (see [Th1, Ch. 8] or [Bon2]). The
realizations of geodesic laminations on X may be given the Hausdorff topology, and the
correspondence between realizations of λ on different surfaces X and X ′ gives a homeo-
morphism. Hence, we refer to a single geodesic lamination space G L (S).

A geodesic lamination λ equipped with a transverse measure µ , namely a measure
on each arc transverse to the leaves of λ invariant under isotopy preserving intersections
with λ , determines a measured lamination. The lamination λ is the called support of the
measured lamination µ and is denoted by |µ|. The simple closed curves with positive real
weights play the role of Dirac measures, and the measured lamination space can be viewed
as their completion with respect to the linear extension of the geometric intersection number
for simple closed curves on S (see [FLP, Th1, Bon2]).

Curve and arc complexes. The complex of curves C (S) associated to the surface S is a
simplicial complex whose vertices correspond to isotopy classes of distinct essential simple
closed curves on S, and whose k-simplices span k+1-tuples of vertices whose correspond-
ing isotopy classes can be realized as a pairwise disjoint collection of simple closed curves
on S. By convention, we obtain the augmented curve complex by adjoining the empty
simplex and denote

Ĉ (S) = C (S)∪∅.

When S has boundary, a relevant related complex is the arc complex of S, A (S), which
is defined analogously and whose vertices correspond to isotopy classes mod-boundary
of arcs with endpoints in ∂S (an isotopy mod-boundary of an arc with endpoints in the
boundary of S allows the endpoints of arcs to move within the boundary of S).

It was shown in [MM1] that the curve complex C (S) is δ -hyperbolic in the sense of
Gromov. Any such space carries a natural Gromov boundary, namely, asymptote classes
of infinite geodesic rays in the space, where two rays are asymptotic if they lie in a uni-
formly bounded Hausdorff distance. Klarreich showed [Kla] (see also [Ham]) that the
Gromov boundary is identified with the space E L (S) of ending laminations on S. This
space consists of the supports of the subset of the measured lamination space consisting
of laminations that fill the surface, namely, laminations µ ∈ML (S) so that every simple
closed curve γ satisfies i(µ,γ) > 0. The space E L (S) inherits the quotient topology from
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ML (S), but it is a Hausdorff subspace of this quotient; this topology is sometimes called
the measure-forgetting topology or the Thurston topology [CEG].

Given a reference hyperbolic structure X on S, for each γ ∈ C 0(S) there is a δγ > 0 so
that for each η with i(η ,γ) = 0, we have disjoint neighborhoods

Nδγ
(γ∗)∩Nδη

(η∗)

where γ∗ denotes the geodesic representative of γ on X . Given a simplex σ ⊂C (S), denote
by collar(σ) the union ⋃

γ⊂σ0

Nδγ
(γ∗).

Definition 2.1. Let λ be a connected geodesic lamination on X ∈ Teich(S). The supporting
subsurface S(λ ) ⊂ S is the compact subsurface up to isotopy whose interior is isotopic in
X either to

1. collar(λ ) if λ is a simple closed curve, or

2. the minimal connected component containing λ of X \ collar(σ) where σ ranges
over {σ ∈ Ĉ (S) | γ ∩λ = ∅, γ ∈ σ0} if λ is not a simple closed curve.

The pants complex. A quasi-isometric model was obtained for the Weil-Petersson metric
in [Br1] using pants decompositions of surfaces. We say two pants decompositions P and P′

are related by an elementary move if P′ can be obtained from P by replacing a curve α in P
with a curve β so that α and β have minimal intersection among all possible replacements
for α that yield a pants decomposition. Let P(S) denote the graph whose vertices represent
distinct isotopy classes of pants decompositions of S, or maximal simplices in C (S), and
whose edges join vertices that differ by an elementary move.

Hatcher and Thurston showed that P(S) is connected (see [HLS]) so we may con-
sider the edge metric on P(S) as a distance on the pants decompositions of S. Letting
Q : P(S)→ Teich(S) be any map that associates to P a surface X on which P is a Bers pants
decomposition.

Theorem 2.2. ([Br1, Thm. 1.1]) The map Q is a quasi-isometry.

In other words, the map Q distorts distances by a bounded multiplicative factor and a
bounded additive constant.

The Weil-Petersson completion and its strata. Non-completeness of the Weil-Petersson
metric corresponds to finite-length paths in Teichmüller space along which length func-
tions for simple closed curves converge to zero (see [Wol1]). In [Mas1], Masur described
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the completion concretely as the augmented Teichmüller space [Brs, Ab] obtained from
Teichmüller space by adding strata consisting of spaces Sσ defined by the vanishing of
length functions

`α = 0

for each α ∈ σ0 where σ is a simplex in the augmented curve complex Ĉ (S). Points in
the σ -null strata Sσ correspond to nodal Riemann surfaces Z, where (paired) cusps are
introduced along the curves in σ .

One can describe the topology via extended Fenchel Nielsen coordinates: given a pants
decomposition P, the frontier spaces subordinate to P represent the union of boundary
strata Sσ where σ0 ⊂ P is a subcollection of pants curves. The topology on the union
of Teich(S) with the boundary stratum Sσ is described by the requirement that the usual
Fenchel-Nielsen length-twist functions for P vary continuously where for α ∈ σ0 the twist
parameter θα is omitted and `α = 0 is an allowed value.

Then the strata Sσ are naturally products of lower dimensional Teichmüller spaces
corresponding to the complete, finite-area hyperbolic “pieces” of the nodal surface Z ∈Sσ .

The completion Teich(S) has the structure of a CAT(0) space: it is a length space,
satisfying the sub-comparison property for chordal distances in comparison triangles in the
Euclidean plane (see [BH, II.1, Defn. 1.1]). Given (X ,Y ) ∈ Teich(S)×Teich(S) we will
denote by g(X ,Y ) the unique geodesic joining X to Y . Then the main stratum, S∅, is
simply the full Teichmüller space Teich(S).

Apropos of this convention, we recall the fundamental non-refraction for geodesics on
the Weil-Petersson completion.

Theorem 2.3 ([DW, Wol5]). (NON-REFRACTION IN THE COMPLETION) Let g(X ,Y ) be
the geodesic joining X and Y in Teich(S), and let σ− and σ+ be the maximal simplices in
the curve complex so that X ∈Sσ− and Y ∈Sσ+ . If η = σ−∩σ+, then we have

int(g)⊂Sη .

We remark that in the special case that X and Y lie in the interior of Teichmüller space
the theorem is simply Wolpert’s original geodesic convexity theorem (see [Wol4]).

As a consequence of Theorem 2.3, the authors obtain a classification of elements of
Mod(S) in terms of their action by isometries of the Weil-Petersson completion Teich(S).
In particular, a mapping class ψ is pseudo-Anosov if no non-zero power of ψ preserves any
isotopy class of simple closed curves on S. As in the setting of the Teichmüller metric, ψ

preserves an invariant Weil-Petersson geodesic axis Aψ ⊂ Teich(S) (see [DW, Wol5]) on
which it acts by translation.

11



Weil-Petersson geodesic rays and ending laminations. Although triangles in a CAT(0)
space can fail the stronger thin-triangles condition of Gromov hyperbolicity, the compari-
son property for triangles suffices to guarantee that there is still a well defined notion of an
asymptote class for a geodesic ray: two rays r and r′ lie in the same asymptote class, or are
asymptotic if there is a D > 0 so that

d(r(t),r′(t)) < D

for each t.
Fixing a basepoint X ∈ Teich(S), however, it is natural in the setting of negative curva-

ture to consider the sphere of geodesic rays emanating from X , which we denote by VX(S)
the Weil-Petersson visual sphere. Geodesic convexity (see [Wol4]) guarantees that we can
compactify Teichmüller space by the visual sphere VX(S). By convention, the rays in VX(S)
will be parametrized by arclength.

Allowing T = ∞, let
r : [0,T )→ Teich(S),

be a Weil-Petersson geodesic ray parametrized by arclength, with r(0) = X so that r(t)
leaves every compact subset of Teichmüller space. We call a simple closed curve γ ∈C 0(S)
a Bers curve for the ray r if there is a t ∈ [0,T ) for which γ is a Bers curve for r(t).

We associate a geodesic lamination λ (r) to a ray r as follows.

Definition 2.4. An ending measure for a geodesic ray r(t) is any limit [µ] in PML (S)
of the projective classes [γn] of any infinite family of distinct Bers curves for r.

Given L > 0 there may be a fixed curve γ that satisfies `r(t)(γ)≤ L for each t. Those γ

that have no positive lower bound to their length, however, play a special role.

Definition 2.5. A simple closed curve γ is a pinching curve for r if `r(t)(γ)→ 0 as t→ T .

A single ray can exhibit both types of behavior, motivating the following definition.

Definition 2.6. If r(t) is a Weil-Petersson geodesic ray, the ending lamination λ (r) for r is
the union of the pinching curves and the geodesic laminations arising as supports of ending
measures for r.

To justify the definition we must show that pinching curves and ending measures to-
gether have the underlying structure of a geodesic lamination. To this end, we establish the
following basic property of ending measures.
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Lemma 2.7. Let µ be an ending measure for a ray r. Then there is a K > 0 so that for
each t we have

`r(t)(µ)≤ K.

Proof. We first note that if µ is an ending measure for r, then r has infinite length. Indeed,
if the length of r were finite, then the path r(t) converges to a nodal surface in the Weil-
Petersson completion of Teich(S), and for each simple closed curve γ on S either

1. the length of γ converges along the ray r(t) or,

2. there is a pinching curve α for which i(α,γ) > 0.

It follows that the union of Bers curves over all surfaces r(t) is finite, and thus there is no
infinite family of distinct Bers curves for the ray r(t).

Let γn be a sequence of Bers curves for the ray r so that the length of γn is infimized at
r(tn), and for which ti < ti+1, i ∈ N. Let [µ] be any accumulation point of the sequence of
projective classes [γn] in PML (S). Then µ is an ending measure for r. We may assume,
after rescaling, that µ is the representative in the projective class [µ] with `X(µ) = 1.

Letting sn > 0 be taken so that

sn =
1

`X(γn)
,

the measured laminations snγn satisfy `X(snγn) = 1 for each n, and it follows that snγn→ µ

in ML (S).
Fixing a value t ′ > 0, there is an N′ so that for n > N′, we have tn > t ′. Applying

convexity of the length function `r(t)(γn) as a function of t, [Wol4], we conclude that

`r(t ′)(snγn) < 1

for each n > N′. The length of a lamination

`.(.) : Teich(S)×ML (S)→ R+

is a bi-continuous function, and we conclude that

`r(t ′)(µ)≤ 1.

Since t ′ > 0 was arbitrary, we have that the inequality is satisfied for our normalization of
µ , which was by a scalar multiple. The Lemma follows. �
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For future reference, we establish the following continuity property for the behavior of
bounded length laminations along rays.

Lemma 2.8. Let rn → r be a convergent sequence of rays in the visual sphere VX(S).
Then if µn is any sequence of ending measures or weighted pinching curves for rn, any
representative µ ∈ML (S) of the limit [µ] of projective classes [µn] in PML (S) has
bounded length along the ray r.

Proof. After normalizing so that `X(µn) = 1 we may assume that

`rn(t)(µn) < 1

along rn. Assume that rn and r are parametrized by arc-length. Then for each surface
Y = r(s) along r there are surfaces Xn = rn(s) with Xn→ Y in Teich(S). By continuity of
length on Teich(S)×ML (S), we have

`Xn(µn)→ `Y (µ)

and thus that `Y (µ)≤ 1. Since s is arbitrary, we have that the length of µ is bounded above
by 1 along the ray r. �

Proposition 2.9. Given a ray r(t), the union λ (r) is a non-empty geodesic lamination.

Proof. We first show that given r, there exists either a pinching curve or an ending measure
for r. If r is a ray of finite length, then it terminates in the completion at a nodal surface
Z in a boundary stratum Sσ . It follows that each curve γ associated to a vertex of σ has
length tending to zero along r and is thus a pinching curve for r.

Assume there are no pinching curves along r. Then, since r leaves every compact
subset of Teich(S), and it does not terminate in the completion, it follows that it has infinite
Weil-Petersson length. Then we claim there is a non-trivial ending measure µ for r. It
suffices to show that there are infinitely many distinct Bers curves γn for surfaces r(tn),
with tn→ ∞. But otherwise, the set of all Bers pants decompositions along the ray is also
bounded. By Theorem 2.2, such a bound also determines a bound for the length of the ray
r via the quasi-isometry Q, contradicting the assumption that r was infinite.

As in the definition of the ending lamination for hyperbolic 3-manifolds [Th1, Ch. 8],
it suffices to show that for any pair of µ1 and µ2 of weighted pinching curves or ending
measures, that the intersection number satisfies

i(µ1,µ2) = 0.
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We note first that by the collar lemma any two pinching curves for r must be disjoint.
Furthermore, if `r(t)(γ)→ 0 as t → T , then γ is disjoint from each Bers curve on r(t) for
t sufficiently large. Thus, if µ is an ending measure for r(t), then we have i(γ,µ) = 0 as
well. Thus we reduce to the case that µ1 and µ2 are both ending measures.

Assume that i(µ1,µ2) > 0. We note in particular that if µ1 and µ2 fill the surface,
Lemma 2.7 guarantees that the ray r(t) defines a path of surfaces that range in a com-
pact family in Teich(S) by Thurston’s Binding Confinement (see [Th2, Prop. 2.4]). This
contradicts the assumption that r leaves every compact subset of Teich(S).

More generally, let µ1 and µ2 fill a proper essential subsurface Y ⊂ S. Then a more
general version of binding confinement, Converge on Subsurface (see [Th2, Thm. 6.2]),
ensures that representations ρt : π1(S)→ PSL2(R) for which r(t) = H2/ρt(π1(S)) have
restrictions to π1(Y ) that converge up to conjugacy after passing to a subsequence.

Let Yt denote the minimal subsurface with geodesic boundary in H2/ρt(π1(S)) isotopic
to Y . Then the length function for each simple closed curve α ∈ C (Y ) and each arc mod
boundary β ∈A (Y ) converges along the convergent subsequence to a positive number. As
a result, the set of Bers curves for r intersects Y in a finite collection of isotopy classes
mod-boundary. Furthermore, since the marked hyperbolic structure on Yt is converging, no
such curve can be a pinching curve for r. Each ending measure µ is a limit of weighted
Bers curves snγn, with sn→ 0, so it follows that for each η ∈ C (Y ) we have

i(η ,snγn)→ 0

which contradicts that the support of µi intersects Y .
We conclude that i(µ1,µ2) = 0, and thus that the set of complete geodesics in the sup-

port of all pinching curves and ending measures forms a closed subset consisting of disjoint
complete geodesics, namely, a geodesic lamination. �

We note the following corollary of the proof.

Corollary 2.10. Let µ ∈ML (S) be any lamination whose length is bounded along the
ray r ∈ VX(S). Then if µ ′ is an ending measure for r or a measure on any pinching curve
for r, we have

i(µ,µ
′) = 0.

Proof. The proof of Proposition 2.9 employs only the bound on the length of µ1 and µ2
along the ray to show the vanishing of their intersection number. The argument applies
equally well under the assumption that µ1 is a simple closed curve of bounded length, and
µ2 is an ending measure, or a weighted pinching curve. Letting µ play the role of µ1 and
µ ′ play the role of µ2, the Corollary follows. �
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By Thurston’s classification of elements of Mod(S), a pseudo-Anosov element ψ ∈
Mod(S) determines laminations µ+ and µ− in ML (S), invariant by ψ up to scale [Th3].
Each determines an unique projective class in PML (S), the so-called stable and unstable
laminations for ψ , and arises as a limit of iteration of ψ on PML (S). Specifically, given
a simple closed curve γ , we have

[µ+] = limψ
n([γ]) and [µ−] = limψ

−n([γ])

in PML (S). Similarly, each X ∈ Aψ , determines a forward ray r+ based at X so that
ψ(r+) ⊂ r+ and a backward ray r− at X so that r− ⊂ ψ(r−). Invariance of the axis Aψ ,
then, immediately gives the following relationship between the stable and unstable lami-
nations for ψ and the ending laminations for the forward and backward rays at X for the
invariant axis Aψ .

Proposition 2.11. Let ψ ∈Mod(S) be a pseudo-Anosov element with invariant axis Aψ .
Let X ∈ Aψ , and let r+ and r− be the forward and backward geodesic rays at X determined
by Aψ . Then we have

|µ+|= λ (r+) and |µ−|= λ (r−)

where µ+ is the stable lamination for ψ and µ− is the is the unstable lamination.

Proof. Letting γ be a Bers curve for the surface X , the projective class [µ+] of µ+ is the
limit of the projective classes [γn] where γn = ψn(γ) and likewise, [µ−] is the limit of [γ−n].
Since γn is a Bers curve for ψn(X), it follows that µ+ and µ− are ending measures r+

and r−, respectively. Since µ+ fills the surface, any other ending measure µ for r+ has
intersection number i(µ+,µ) = 0, so we have λ (r+) = |µ+| and likewise λ (r−) = |µ−|.
�

3 Density, recurrence, and flows
In [Br2], we employ the CAT(0) geometry of the Weil-Petersson completion to show the
following.

Theorem 3.1. ([Br2, Thm. 1.5]) The finite rays are dense in the visual sphere.

To obtain a simplified proof of the Masur-Wolf theorem that the orientation-preserving
isometries of the Weil-Petersson metric are identified with mapping classes, Wolpert ob-
served that one obtains the following generalization (see [Wol5, Sec. 5]).
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Theorem 3.2 (Wolpert). Restrictions to Teich(S) of Weil-Petersson geodesics in Teich(S)
joining pairs of maximally noded surfaces are dense in the unit tangent bundle T 1Teich(S).

We recall a key element of the proof.

Lemma 3.3 (Wolpert). The finite rays have measure zero in the visual sphere.

(See [Wol5, Wol6]).

Proof. Given a simplex σ in C (S), consider the natural geodesic retraction map from a
given null-stratum Sσ onto the unit tangent sphere at X ∈ Teich(S), sending each point
Z ∈Sσ to the unit tangent at X in the direction of the unique geodesic from X to Z. Wolpert
observes this map is Lipschitz from the intrinsic metric on Sσ to the standard metric on
the unit tangent sphere. As each stratum has positive complex co-dimension, the image of
Teich(S)\Teich(S) has Hausdorff measure zero in the (real co-dimension 1) visual sphere.
It follows that infinite directions have full measure. �

Theorem 1.7 follows as an immediate corollary.

Theorem 1.7. The geodesic flow is defined for all time on the full-measure subset consisting
of lifts of bi-infinite Weil-Petersson geodesics on M (S) to its unit tangent bundle T 1M (S).

Proof. That the infinite rays have full-measure in the unit tangent bundle T 1
X M (S) at X ∈

M (S) implies that the directions determining bi-infinite geodesics have full measure in
T 1

X M (S) as well. The union of these over all X ∈M (S) is a flow-invariant set of full
measure, by Fubini’s theorem. �

A geodesic ray r based at X ∈M (S) is divergent if for each compact set K ⊂M (S),
there is a T for which r(t)∩K = ∅ for each t > T . A ray r is called recurrent if it is not
divergent. Alternatively, Mumford’s compactness theorem [Mum], guarantees that given
ε > 0 the “ε-thick-part”

Teich≥ε(S) = {X ∈ Teich(S) | `X(γ)≥ ε, γ ∈ C 0(S)}

of Teichmüller space projects to a compact subset of M (S). Thus we may characterize
recurrent rays equivalently by the condition that there is an ε > 0 and a sequence of times
tn→ ∞ so that r(tn)⊂ Teich≥ε(S).

Taking Theorem 1.7 together with the Poincaré recurrence theorem, we have the fol-
lowing.
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Theorem 3.4. The recurrent geodesics in T 1M (S) determine a full-measure invariant sub-
set.

Proof. The geodesic flow is volume-preserving, by Liouville’s theorem (see [CFS, §2,
Thm. 2]), and thus finiteness of the Weil-Petersson volume of moduli space ([Mas1,
Wol2]), and hence its unit tangent bundle, guarantees that no positive measure set of
geodesics can be divergent by Poincaré recurrence. �

The construction of an infinite ray at Y ∈ Teich(S) asymptotic to a given ray at X ∈
Teich(S) is an essential tool in our discussion. This is a general feature of complete CAT(0)
spaces, as shown in [BH, II.8, 8.3], and thus applies to the completion Teich(S). More care
is required, however, to show that the resulting infinite ray in Teich(S) actually determines
an infinite ray in Teich(S). Indeed, the possibility that a limit of unbounded or even in-
finite geodesics might be finite cannot be ruled out a priori, as was shown in [Br2] (see
also [Wol5]). This is also a consequence of Theorem 1.7. Theorem 1.4 follows from a key
application of Theorem 2.3, the non-refraction of geodesics in the Weil-Petersson comple-
tion.

Theorem 1.4. (BOUNDARY AT INFINITY) Let X ∈ Teich(S) be a basepoint.

1. For any Y ∈ Teich(S) with Y 6= X, and any infinite ray r based at X there is a unique
infinite ray r′ based at Y with r′(t) ∈ Teich(S) for each t so that r′ lies in the same
asymptote class as r.

2. The change of basepoint map restricts to a homeomorphism on the infinite rays.

Remark. Because of totally geodesic flats in the completion arising from product strata,
the condition that rays be merely asymptotic, namely, that they remain a bounded distance
apart, cannot be improved to the condition that they be strongly asymptotic, though we will
see this follows for recurrent rays (Theorem 4.1).

Proof. It is a general consequence of [BH, II.8, 8.3] applied to the complete CAT(0) space
Teich(S) that we have an infinite geodesic ray r′(t) in Teich(S) based at Y in the asymptote
class of r based at X . Indeed, the ray r′(t) is the limit of finite-length geodesics g(Y,r(t))
joining Y to points along the ray r with their parametrizations by arclength, a fact we note
for future reference.

It remains only to conclude that r′(t) ∈ Teich(S) for each t > 0. But by Theorem 2.3,
for each T > 0 the geodesic r′([0,T ]) has interior r′((0,T )) in the stratum Sσ0∩σT where
r′(0) ∈Sσ0 and r′(T ) ∈SσT . But since X ∈ Teich(S) we have σ0 = ∅, so r′(t) lies in the
main stratum S∅ = Teich(S) for each t < T . Since T is arbitrary, the conclusion follows.
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It is general for a CAT(0) space that given a basepoint X , and an infinite ray r at X , the
ray r is the unique representative of its asymptote class that is based at X . Thus, we have
a unique infinite ray based at a fixed X in each asymptote class. Applying the CAT(0)-
geometry of Teich(S), it follows that if rn is a sequence of rays based at X with convergent
initial tangents to the initial tangent of the infinite ray r∞, then the corresponding infinite
rays r′n based at Y in the same asymptote class converge to the ray r′∞ based at Y in the
same asymptote class as r∞. Thus the change of basepoint map is a homeomorphism on
the infinite rays. �

We remark that the assumption that Y lies in the interior of Teich(S) is just for simplic-
ity: the same argument may be carried out to prove the following stronger statement.

Theorem 3.5. Let σ and σ ′ be simplices in Ĉ (S). Let Y lie in the interior of a boundary
stratum Sσ . Then given an infinite ray r in Teich(S) based at X ∈Sσ ′ , there is a unique
infinite ray r′ based at Y with r′(t) ∈ Teich(S)∪Sσ for each t so that r′ lies in the same
asymptote class as r.

Proof. The proof goes through as before with the additional observation that for each s the
limit g∞([0,s)) lies in Teich(S)∪Sσ by Theorem 2.3. �

4 Ending laminations and recurrent geodesics
The primary goal of this section is to establish Theorem 1.1.

Theorem 1.1. (RECURRENT ENDING LAMINATION THEOREM) Let r be an infinite
length Weil-Petersson geodesic ray that is recurrent, and let λ (r) be its ending lamina-
tion. If r′ is any other infinite length geodesic ray with ending lamination λ (r′) = λ (r),
then r is strongly asymptotic to r′.

The main technical tool in this section will be the following application of the Gauss-
Bonnet theorem.

Theorem 4.1. Let r be a recurrent Weil-Petersson geodesic ray. Then if r′ is a ray asymp-
totic to r then r is strongly asymptotic to r′.

Proof. We wish to harness the fact that the recurrent ray r returns to a portion of M (S)
where the sectional curvatures are definitely bounded away from 0 by a negative number.
To do this we employ the following simplicial ruled quadrilateral, a special case of the
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simplicial ruled surfaces employed initially by Canary in his thesis [Can1] (see also [Bon1,
Can2, Sou]).

Given T > 0, we construct a simplicial ruled quadrilateral QT out of two ruled triangles
given by

∆ = g(r′(0),r(0)) · r([0,T ]) ·g(r(T ),r′(0))

ruled by geodesics γt from r′(0) to r(t), where t ∈ [0,T ], and

∆
′ = r′([0,T ]) ·g(r′(T ),r(T )) ·g(r(T ),r′(0))

ruled by geodesics γ ′t from r(T ) to r′(t), where t ∈ [0,T ].
As in [Can1, Sou] the ambient Riemannian metric induces a smooth metric on QT

whose curvature is pointwise bounded from above by the upper bound on the ambient
sectional curvatures.

r([0,T ])

r′([0,T ])
QT

∆ ∆′
γt

Figure 1. A simplicial ruled quadrilateral QT .

By recurrence of r(t), there is a sequence of times tn, for which r(tn) lies in the ε-thick
part, and thus the curvatures at r(tn) are bounded above by κε < 0.

Assume there is a δ > 0 so that the distance from r(t) to r′(t) remains bounded below
by δ . Then for each tn < T there is a definite contribution to the integral

−
∫

QT

κ

of the curvature over the quadrilateral QT . The exterior angles of QT are uniformly bounded
above, so by Gauss-Bonnet there is a universal upper bound to the total integral, contra-
dicting the existence of δ . �

Remark: This “simplicial ruled surface” argument, which goes back to Bonahon and Ca-
nary has been observed independently by Bestvina and Fujiwara to have applicability to
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the study of action of Mod(S) on Teich(S) as the isometry group of a CAT(0)-space (cf.
[BeFu]).

We employ the fact that recurrent rays exhibit such strongly asymptotic behavior to
conclude Theorem 1.5.

Theorem 1.5. (RECURRENT VISIBILITY) Let r+ and r− be two distinct infinite rays
based at X.

1. If r+ is recurrent, then there is a single bi-infinite geodesic g(t) so that g+ = g|[0,∞)
is strongly asymptotic to r+ and g− = g|(−∞,0] is asymptotic to r−. In particular, if
both r+ and r− are recurrent, then g is strongly asymptotic to both r− and r+.

2. If µ ∈ML (S) has bounded length on r± then it has bounded length on g±.

Proof. We seek to exhibit a bi-infinite Weil-Petersson geodesic g : R→ Teich(S) with the
property that g is strongly asymptotic to the recurrent ray r+, in positive time and asymp-
totic to r− in negative time. In other words there is a reparametrization t 7→ s(t) > 0 so that
we have

d(g(s(t)),r+(t))→ 0

as t→ ∞, and
d(g(t),r−(−t))

is bounded for t < 0.
Applying Theorem 1.4 and Theorem 4.1 we may consider geodesic rays gn(t) with

gn(0) = r−(n) that are strongly asymptotic to r+(t). Given n we may again consider a
simplicial ruled quadrilateral QT (n) with corners at r+(0), r+(T ), gn(0) and gn(T ) for
each T > 0. Once again, the integral of the curvature is uniformly bounded in absolute
value as above, and thus there is a uniform upper bound for the value d > 0 for which each
point in r+([0,d]) lies at distance at least δ from gn(t), where d is independent of n. Then
r+(d) lies within δ of some point gn(td,n) for each n > 0. Taking δ small enough so that
r+(d) has a precompact δ -neighborhood in Teich(S), the points gn(td,n) converge within
Teich(S) to a limit Z after passing to a subsequence.

By a further application of Theorem 1.4, there are infinite rays h+(t) and h−(t) based
at Z so that h−(t) is asymptotic to r−(t) and h+(t) is strongly asymptotic to r+(t). The
convergence of gn(td) to Z guarantees that the limiting directions of gn at Z converge to
the initial tangent directions of h+ and h− up to sign, so their concatenation is the desired
bi-infinite geodesic g(t).

For statement (2), we note that the forward ray g+ is also the limit of geodesics g+
n

joining g+(0) to r+(n), so if µ has bounded length along r+, then convexity of the length
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of µ guarantees that the length of µ is uniformly bounded on g+
n . Each point on the ray g+

is a limit of g+
n (tn) for some collection {tn}, so by continuity of the length of µ on Teich(S)

we have a length bound for µ along all of g+. �

In Section 2, we employed the boundedness of ending measures along a ray to establish
that the ending lamination is well defined. For a recurrent ray, however, we can guarantee
that the length of any lamination with bounded length decays to zero.

Lemma 4.2. Let r(t) be a recurrent ray, and let µ ∈ML (S) be any lamination with
`r(t)(µ) < K along r(t). Then we have

`r(t)(µ)→ 0

as t→ ∞.

Proof. Assume r(t) recurs to the ε-thick part at times tn→ ∞. Wolpert’s extension of his
convexity theorem for geodesic length functions guarantees that the length of µ ∈ML (S),
in addition to being convex along geodesics [Wol4], satisfies the following stronger con-
vexity property: given ε > 0, there is a c > 0 so that at each t for which r(t) lies in the
ε-thick part, we have

`′′r(t)(µ) > c`r(t)(µ)

(see [Wol6]). The proof of the Lemma then follows from the observation that if the bounded
convex function `r(t)(µ) does not tend to zero, then we nevertheless have `r(t)(µ)→C > 0
as t → ∞, which guarantees that `′′r(t)(µ)→ 0 by convexity. This contradicts the above
inequality at the times tn for n sufficiently large. �

Though the ending lamination need not fill the surface in general, the recurrent rays
provide a class of rays where µ fills S.

Proposition 4.3. Let µ be any measured lamination with bounded length along the recur-
rent ray r(t). Then µ is a filling lamination.

Proof. Assume µ does not fill, and let S(µ) be the supporting subsurface for its support
|µ|. Let γn ∈ C (S(µ)) be a sequence of simple closed curves whose projective classes [γn]
converge to [µ] in PML (S). Note in particular that

i(∂S(µ),γn) = 0

for each n.

22



By an application of Lemma 2.8 given any Z ∈ Teich(S(µ)) there is a Weil-Petersson
ray r̂ in Teich(S(µ)) based at Z along which µ has bounded length: to see this, note that
that the limit of rays joining Z to nodal surfaces Zn in Teich(S(µ)) with γn pinched has the
property that [µ] = limn→∞[γn] is the projective class of a lamination with bounded length
on any limit r̂, of the finite segments g(Z,Zn) in Teich(S(µ)), by Lemma 2.8, and the fact
that µ fills S(µ) guarantees that r̂ has no pinching curves. Thus r̂ has infinite length.

Letting σµ ∈ Ĉ (S) be the simplex spanned by the curves in ∂S(µ) we note that the
stratum Sσµ

is the metric product of Weil-Petersson metrics on Teich(S(µ)) and the Weil-
Petersson metrics on Teich(Y ) where Y is the disjoint union of non-annular components of
S\S(µ).

Together with the basepoint X , then, the ray r̂ naturally determines a ray r in the stratum
Sσµ

by taking the projection of r(t) to Teich(S(µ)) to be r̂(t) and identifying each other
coordinate of r(t) in the product decomposition of Sσµ

with the (constant) coordinate
function of the nearest point projection of X to Sσµ

.
Applying Theorem 3.5, there is a unique ray r′ based at X asymptotic to r. The ray

r′ is constructed as a limit of segments gt = g(X ,r(t)) joining X to points along r. The
length of µ and each curve γ ⊂ ∂S(µ) is uniformly bounded on the segments g(X ,r(t)), by
convexity of length functions. Applying continuity of length, then, that we have a K > 0 so
that

`r′(t)(µ) < K and `r′(t)(γ) < K

for each γ ∈ ∂S(µ).
If r′ is distinct from r, however, Theorem 1.5 guarantees that we may find a bi-infinite

geodesic g(t) that is strongly asymptotic to r(t), for t > 0, by recurrence, and so that g|(−∞,0]
stays a bounded distance from r′(t). Once again, the length of µ is uniformly bounded over
the entire bi-infinite geodesic g, a contradiction. We conclude that r = r′ and thus that γ

has bounded length along the ray r(t). But by Lemma 4.2, this boundedness implies that
the length of γ tends to zero along r(t), violating recurrence of r(t).

We conclude that µ fills S. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let r be based at X ∈ Teich(S) with ending lamination λ = λ (r).
Let Σ denote the simplex of projective classes of measures on λ in PML (S), and let
µ ∈ML (S) be a representative of the projective class determined by a point in the interior
of the top dimensional face. Then µ is a positive linear combination of all ergodic measures
on λ .

Let γn be a sequence of simple closed curves for which the projective classes [γn] con-
verge to [µ], and let rn be a sequence of finite rays based at X limiting to points Zn in the
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strata Sγn . Since γn are pinching curves for rn, Lemma 2.8 guarantees that any limit r∞ of
rn has the property that µ has bounded length along r∞. Since µ is a positive linear com-
bination of all the ergodic measures on λ , it follows that each ergodic measure on λ has
bounded length along r∞. Hence, any measured lamination representing a projective class
in Σ has bounded length along r∞ since each is a linear combination of ergodic measures.

Since λ (r) is filling, by Proposition 4.3, we have that µ is filling. This guarantees that
r∞ has infinite length, since otherwise r∞ would have a pinching curve γ with i(γ,µ) > 0,
violating the length bound on µ along r∞.

If µ̂ is any ending measure for r, then µ̂ represents a projective class in Σ, and thus has
bounded length along r∞. If r and r∞ are distinct rays, then Theorem 1.5 guarantees that we
have a bi-infinite geodesic g(t) asymptotic to r and r∞ along which µ̂ has bounded length,
a contradiction. It follows that r = r∞.

If r′ is another ray based at Y ∈ Teich(S) with ending lamination λ , the same argument
applied to finite rays r′n joining Y to Zn shows that r′ is the limit of r′n. But if D = d(X ,Y ),
then rn and r′n have the property that

d(rn(t),r′n(t))≤ D

by the CAT(0) comparison property. It follows that the limits r∞ and r′∞ are asymptotic,
and thus that r and r′ are as well.

Applying Theorem 4.1, we conclude that r and r′ are strongly asymptotic, concluding
the proof. �

As a further consequence, we note the following.

Corollary 4.4. Let g(t) be a bi-infinite Weil-Petersson geodesic whose forward trajectory
is recurrent. Then the ending laminations λ+ and λ− for the rays g+ = {g(t)}∞

t=0 and
g− = {g(t)}−∞

t=0 bind the surface S.

Proof. The ending lamination λ+ for the forward trajectory fills the surface, so the ending
lamination for the backward trajectory must intersect it, since otherwise the laminations
λ− and λ+ would be identical therefore we would have g+ = g− by Theorem 1.1, a con-
tradiction. �

To derive Corollary 1.6, we establish a final further continuity property for ending mea-
sures when the limit is recurrent.

Proposition 4.5. If rn is a convergent sequence of rays with a recurrent limit r, any se-
quence µn of ending measures or pinching curves for rn converges in PML (S) up to
subsequence to a measure on λ (r).
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Proof. Let µ be any limit of µn in PML (S) after passing to a subsequence. Then by
Lemma 2.8, the length `r(t)(µ) is bounded. Since r is recurrent, any ending measure µ ′ for
r fills S by Proposition 4.3. But by Corollary 2.10, we have

i(µ,µ
′) = 0

so µ and µ ′ have identical support since µ ′ is filling. Hence, µ is a measure on λ (r). �

Restricting to the recurrent rays, we obtain Corollary 1.6.

Corollary 1.6. The recurrent rays are parametrized by their ending laminations: the map
λ that associates to an equivalence class of recurrent rays their ending lamination is a
homeomorphism to the subset RE L (S) in E L (S).

Proof. That the map is an bijection follows from the fact that RE L (S) is defined as its
image and from Theorem 1.1.

To show continuity in each direction, we begin by noting that although the topology
induced by forgetting the measure on a measure lamination is not a Hausdorff topology on
the geodesic laminations admitting measures, it is Hausdorff when one restricts to those
that fill the surface, namely, the subset E L (S). As such it suffices to consider sequential
limits to establish continuity.

Let rn be a sequence of recurrent rays with recurrent limit r. By Proposition 4.3, their
ending laminations λn are filling laminations and thus determine points in RE L (S). Their
recurrent limit r has ending lamination λ (r), with support identified with the support of a
limiting measure of measures on λn by Proposition 4.5, so λ is the limit of λn in RE L (S),
by the definition of the topology on E L (S).

For continuity in the other direction, compactness of the visual sphere guarantees that
any convergent family of laminations λn converging to λ∞ in RE L (S) determine a se-
quence of rays rn with limit r∞ after passing to a subsequence. A convergent family of
measures µn on λn has limit µ∞, a measure on λ∞, with bounded length on the limiting ray
r∞ by Lemma 2.8. Since µ∞ is filling, and any ending measure or weighted pinching curve
µ ′ for r∞ satisfies i(µ,µ ′) = 0, we conclude that µ ′ has the same support as µ∞, namely λ∞.
Thus r∞ is the recurrent ray determined (uniquely) by λ∞. Since any accumulation point
of the rays rn has this property, the original sequence of rays itself was convergent to r∞,
obviating passage to subsequences. �

Finally, we address the asymptotic behavior of length functions along a recurrent ray.
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Theorem 4.6. Let r(t) be a recurrent ray with ending lamination λ (r). Then every measure
µ on λ (r) has the property

`r(t)(µ)→ 0.

Proof. By the proof of Theorem 1.1, every measure on the ending lamination λ (r) is
bounded along the ray. The theorem follows as an application of Lemma 4.2. �

5 The topological dynamics of the geodesic flow
We now relate the preceding results to the study of the Weil-Petersson geodesic flow on the
unit tangent bundle of the Moduli space.

Though it is seen in [Br2] that the change of basepoint map is discontinuous on the
visual sphere, the visibility property for recurrent rays (Theorem 1.5) is sufficient to rem-
edy the situation for considerations of topological dynamics, yielding Theorem 1.8, whose
proof we now supply.

Theorem 1.8. (CLOSED ORBITS DENSE) The closed orbits of the geodesic flow are dense
in T 1M (S).

Proof. Because of the density of bi-recurrent geodesics in the unit tangent bundle to moduli
space, it suffices by a diagonal argument to approximate a bi-recurrent direction with closed
geodesics.

To this end, let {g(t)}∞
t=−∞ be a bi-infinite geodesic that is bi-recurrent. Let X = g(0) be

a basepoint, and let λ+ be the ending lamination for the forward ray g+(t) = {g(t)}∞
t=0 and

likewise let λ− denote the ending lamination for the backward ray g−(t) = {g(−t)}∞
t=0.

By Corollary 4.4, λ+ and λ− bind the surface S, so letting µ+ and µ− be measures on
λ+ and λ−, respectively, any pair of simple closed curves γ+ and γ− very close to µ+ and
µ− in PML (S) also bind S.

Letting τ+ be a Dehn twist about γ+ and τ− be a Dehn twist about γ−, the composition

ψk = τ
k
+ ◦ τ

k
−

is pseudo-Anosov for all k sufficiently large [Th3]. Furthermore, the stable and unstable
laminations for ψk converge to γ+ and γ− in PML (S) as k→ ∞. Diagonalizing, then,
we obtain a sequence of pseudo-Anosov mapping classes ϕn whose unstable and stable
laminations µ+

n and µ−n converge to µ+ and µ− in PML (S). Since the supports |µ±n |
and |µ±| lie in RE L (S), we have convergence of |µ±n | to λ± in RE L (S) by the definition
of the topology on E L (S).
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Letting An be the axis for ϕn, we claim An is arbitrarily close to g at g(0) in the unit
tangent bundle for n sufficiently large.

To see this, we apply Theorem 1.4 to obtain a ray r+
n in VX(S) asymptotic to An in

the forward direction. We note that, as An is itself bi-recurrent, the ray r+
n is strongly

asymptotic to An, by Theorem 4.1, and that the ending lamination λ+
n for r+

n is equal to the
support of µ+

n . It follows that λ+
n converges to λ+ in RE L (S). Likewise, if r−n denotes

the ray in VX(S) asymptotic to An in the negative direction, then λ−n = λ (r−n ) converges to
λ− in RE L (S).

The parametrization of recurrent rays by their ending laminations in E L (S), Corol-
lary 1.6, guarantees that r+

n and r−n converge to g+ and g− respectively.
We claim that the bi-recurrence of g guarantees that for n sufficiently large r+

n and
r−n themselves recur to the thick part sufficiently so that the axis An lies within uniformly
bounded distance of the basepoint X . To see this, we note that because the rays r+

n and r−n
are converging to the recurrent rays g+ and g−, for each segment along g+, say, there is
a segment along r+

n close to it for all n sufficiently large. Thus, if g+ enters the 2ε-thick
part at some point g+(t), then r+

n will eventually encounter the ε-thick part for each n
sufficiently large (and likewise for g− and r−n ). In particular, by recurrence of g+ and g−
we have positive ε > 0 and δ so that for each integer m > 0 there is a T > 0, and an integer
N so that for all n > N, both rays r+

n and r−n recur to the ε-thick part for m segments of
length at least δ within time T of X .

Applying the ruled quadrilateral argument of Theorem 4.1 to the two quadrilaterals
made up of the segments g(X ,r+

n (T )), g(X ,r−n (T )), the nearest point projection paths join-
ing X , r+

n (T ), and r−n (T ) to their nearest points Z0
n , Z+

n and Z−n on An, and the segments
g(Z−n ,Z0

n) and g(Z0
n ,Z+

n ) (see figure 2), we again conclude that there are times t±d so that

Z−n Z+
n

An

r−n (T ) r+
n (T )

X = g(0)
g+g−

Z0
n

ε−thick

Figure 2. The axis An converges to g.

r+
n (t+d ) and r−n (t−d ) lie within a uniformly bounded distance of An for all n sufficiently large.

It follows that we may extract a limit A∞ of the axes An. Since An is strongly asymptotic
to r+

n and r−n , the limit A∞ is strongly asymptotic to g+ and g−, guaranteeing that A∞ = g.
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Thus, the projections of An to M (S) are closed geodesic approximating the bi-recurrent
projection of g to M (S), as was desired. �

Using the boundary theory for the recurrent rays and its connection with measured
laminations, we can harness the north-south dynamics of pseudo-Anosov elements on
PML (S) to establish Theorem 1.9 as a consequence of Theorem 1.8.

Theorem 1.9. (DENSE GEODESICS) Given any X ∈ Teich(S), there is a Weil-Petersson
geodesic ray based at X whose projection to T 1M (S) is dense.

Remark: With a tractable boundary theory in place, arguments for topological transitivity
from the density of closed orbits are standard. The proof, which follows these general lines,
shows no complications arise in our setting.

Proof. Given X ∈ Teich(S), a positive δ , and a pseudo-Anosov mapping class ψ , we have
from Corollary 1.6 that there is a neighborhood Uδ (ψ) ⊂RE L (S) of the support λ+ of
the attracting lamination µ+ for ψ so that if λ ′ ∈Uδ (ψ) is the support of any other pseudo-
Anosov fixed point in PML (S), then the ray r in VX(S) with ending lamination λ ′ comes
within δ of the axis Aψ of ψ for a full period gψ,Z = g(Z,ψ(Z)), for some Z ∈ Aψ , of the
action of ψ on Aψ .

Thus we may argue by induction. Let {ψn}∞
n=1 ⊂ Mod(S) be a family of pseudo-

Anosov elements whose corresponding closed geodesics on M (S) form a dense family
in T 1M (S), and let X ∈ Teich(S) be a basepoint. Let δn→ 0 be given so that the δn neigh-
borhood of the axis An for ψn lies entirely within Teich(S). It suffices to find a geodesic ray
r based at X so that for each n there is a segment along r lies within δn of the axis of some
conjugate in Mod(S) of ψn for a full period gn along the axis.

Assume that for k > 1 we have a ray rk based at X forward asymptotic to the axis of a
suitable conjugate ψ̂k of ψk so that the support λ̂

+
k of the attracting lamination of ψ̂k lies in

the intersection
Vk = Uδ1(ψ̂1)∩ . . .∩Uδk−1

(ψ̂k−1).

Then for a sufficiently large power pk+1, the support λk+1 of the attracting lamination for
ψk+1 has image ψ̂k

pk+1(λk+1) within Vk. Taking rk+1 to be the ray asymptotic to the axis
of the pseudo-Anosov conjugate

ψ̂k+1 = ψ̂
pk+1
k ◦ψk+1 ◦ ψ̂

−pk+1
k

of ψk+1, we have a ray asymptotic to the axis of a pseudo-Anosov element with attracting
lamination in the intersection

Vk+1 = Uδ1(ψ̂1)∩ . . .∩Uδk
(ψ̂k).
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Thus, rk+1 lies within δn of the axis of the conjugate ψ̂n of ψn, n = 1, . . . ,k + 1, for a
full period gn along the axis of each. This completes the induction.

Thus any limit r∞ of rk as k→∞ in the visual sphere at X will have a dense trajectory in
its projection T 1M (S), provided, once again, that it is an infinite ray. But rk passes within
δn of the axis Ân of ψ̂n at the segment gn ⊂ Ân, for each k > n, so the closest points rk(tn)
to gn range in a compact neighborhood of a bounded interval along Ân. Thus, given T > 0,
and n so that tn > T , the segments rk([0,T ]) sit as a subsegments in a family of segments
rk(tn) whose endpoints converge in Teich(S) as k→ ∞. Thus, the sequence of geodesics
rk([0,T ]) converges to a geodesic in Teichmüller space for each T , by geodesic convexity
of Teich(S) [Wol4]. It follows that the limit r∞ is infinite and projects to a dense subset of
T 1M (S) as was claimed. �
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